Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
tidymodels紹介「モデリング過程料理で表現できる説」
Search
Ringa_hyj
December 05, 2020
Technology
0
380
tidymodels紹介「モデリング過程料理で表現できる説」
JapanR 20201205 一般LT
R
tidymodels
Ringa_hyj
December 05, 2020
Tweet
Share
More Decks by Ringa_hyj
See All by Ringa_hyj
Catching up with the tidymodels.[Japan.R 2021 LT]
ringa_hyj
3
760
多次元尺度法MDS
ringa_hyj
0
230
因子分析(仮)
ringa_hyj
0
110
階層、非階層クラスタリング
ringa_hyj
0
81
深層学習をつかった画像スタイル変換の話と今までの歴史
ringa_hyj
0
350
正準相関分析(仮)
ringa_hyj
0
85
対応分析
ringa_hyj
0
110
2020-11-15-第1回-統計学勉強会
ringa_hyj
0
670
生成モデルの今までと異常検知への応用(GAN,anoGAN,ganomaly,efficient,skip))
ringa_hyj
2
2.3k
Other Decks in Technology
See All in Technology
Tricentisにおけるテスト自動化へのAI活用ご紹介/20240910Shunsuke Katakura
shift_evolve
0
180
Oracle Database Backup Service:サービス概要のご紹介
oracle4engineer
PRO
0
4.1k
四国クラウドお遍路 2024 in 高知 エンディング
yukataoka
0
190
突撃! 隣のAmazon Bedrockユーザー 〜YouはどうしてAWSで?〜
minorun365
PRO
3
320
エンジニア向け会社紹介資料
caddi_eng
15
250k
Oracle Base Database Service:サービス概要のご紹介
oracle4engineer
PRO
0
13k
Envoy External AuthZとgRPC Extensionを利用した「頑張らない」Microservices認証認可基盤
andoshin11
0
220
四国のあのイベントの〇〇システムを45日間で構築した話 / cloudohenro2024_tachibana
biatunky
0
310
CRTO/CRTL/OSEPの比較・勉強法とAV/EDRの検知実験
chayakonanaika
1
1.1k
忙しい人のためのLangGraph概要まとめ
__ymgc__
1
150
AI でアップデートする既存テクノロジーと、クラウドエンジニアの生きる道
soracom
PRO
2
390
DroidKaigi 2024 たすけて!ViewModel
mhidaka
5
570
Featured
See All Featured
What's in a price? How to price your products and services
michaelherold
242
11k
How To Stay Up To Date on Web Technology
chriscoyier
786
250k
Intergalactic Javascript Robots from Outer Space
tanoku
268
26k
The Pragmatic Product Professional
lauravandoore
31
6.2k
Designing for humans not robots
tammielis
248
25k
Documentation Writing (for coders)
carmenintech
65
4.3k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
32k
Pencils Down: Stop Designing & Start Developing
hursman
119
11k
Git: the NoSQL Database
bkeepers
PRO
425
64k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
663
120k
Scaling GitHub
holman
458
140k
Designing with Data
zakiwarfel
98
5k
Transcript
japan.R 2020/12/5
@Ringa_hyj @Ringa_hyj Name <- ‘@Ringa_hyj’ 自 己 紹 介 スライドの
間違い・指摘 歓迎致します
https://www.slideshare.net/YutakaKuroki/tokyo-r-20181110 https://speakerdeck.com/dropout009/tokyo-dot-r83 Rコミュニティを通して知ったtidymodelsの存在 https://speakerdeck.com/dropout009/tidymodelsniyorutidynaji-jie-xue-xi https://speakerdeck.com/s_uryu/tidymodels
知らないパッケージを知る機会 やっぱRコミュニティええなぁ… 受け取ったからには 何かお返ししたい!! 今日やること
tidymodelsの紹介 検 証 対 象 今日やること
を 今日やること
料理に例えるので親しんでもらいたい 今日やること install.packages(‘tidymodels’) library(tidymodels) いれてみて!!
飛行機の遅延予測
食材 の準備 = 欠損値 messy データ準備・前処理 library(nycflights13) #まず確認 library(skimr) skim(flights)
library(tidyverse) glimpse(flights) #余分なゴミを落とす flight_data <- flights %>% mutate( arr_delay = ifelse(arr_delay >= 30, "late", "on_time"), arr_delay = factor(arr_delay), date = as.Date(time_hour) ) %>% inner_join(weather, by = c("origin", "time_hour")) %>% select(dep_time, flight, origin, dest, air_time, distance, carrier, date, arr_delay, time_hour) %>% na.omit() %>% mutate_if(is.character, as.factor)
食材 の準備 = データ準備・前処理
食材 の確認 = #食材の状態や揃っているかを確認 p <- ggplot(flight_data, aes(x = carrier,fill=arr_delay))
+ geom_bar(stat = "count",position = "stack") + stat_count(aes(label = ..count..), geom = "text", vjust = 2, colour = "red") library(plotly) ggplotly(p) EDAで確認 EDA
食材 の確認 = EDA
味見・評価 する人 = train,test,valid #試食者にだけウケる味でなく #色々な人に良い評価をもらうため set.seed(123) data_split <- initial_split(flight_data,
prop = 0.7) train_data <- training(data_split) test_data <- testing(data_split) train test valid 感想:内輪ウケ 世間的な評価 口コミ 感想:一般ウケ
調理手順 の設定 = モデル学習用の前処理 #どんな手順で調理するのが効率的か #料理直前の下ごしらえ #trainとtestの人で提供する食材の部分が変化しないか flights_rec <- recipe(arr_delay
~ ., data = train_data) %>% update_role(flight, time_hour, new_role = "ID") %>% step_date(date, features = c("dow", "month")) %>% step_holiday(date, holidays = timeDate::listHolidays("US")) %>% step_rm(date) %>% step_dummy(all_nominal(), -all_outcomes()) %>% step_zv(all_predictors()) #step_smote()今回不均衡だが不使用 ← themisにも対応 #recipeをかけた後がどうなるか #調理前にデータを味見する #prep, bake, juice flights_rec%>% prep() %>% juice() flights_rec %>% prep() %>% bake(test_data)
調理手順 の設定 = モデル学習用の前処理 従来まで ・testにないカテゴリをone hotしないように! ・ID列を予測に使ってないよな? ・どの列box-coxしたっけ? ・日付から月,日,曜日の特徴量合成したっけ?
・正規化終わってたっけ? ・予測対象がleakしてないよな? ・あ、testにも同じパラメタで処理しなきゃいけないんだった… juice(), bake() レシピを展開
調理器具 の設定 = モデル決め #調理前の下ごしらえも終わった #調理器具によってはマッチしない下ごしらえもある #フライパンか鍋か、IHかガスか lr_mod <- logistic_reg()
%>% set_engine("glm")
調理器具 の設定 = モデル決め モデル式の記述の違い(ベクトル,マトリックス,列名) lm glmnet lr_mod <- logistic_reg()
%>% set_engine("lm") lr_mod <- logistic_reg() %>% set_engine("glm")
調理器具 の設定 = モデル決め 内部パラメタの名前の違い(おなじチューニングパラメタなのに…) ranger randomForest ranger randomForest parsnip
抽出サイズ mtry mtry → mtry 木の数 num.trees ntree → trees 分割サイズ min.node.size nodesize → min_n
調理場 手順と器具を持って へ = 学習・推論 #調理場へ持っていく flights_wflow <- workflow() %>%
add_model(lr_mod) %>% add_recipe(flights_rec) #いざ調理 flights_fit <- flights_wflow %>% fit(data = train_data) #完成 predict(flights_fit, test_data) predict(flights_fit, test_data, type = "prob")
調理場 手順と器具を持って へ = 学習・推論 従来のsummary() oh, messy…
調理場 手順と器具を持って へ = 学習・推論 tidy() is tidy !
調理場 手順と器具を持って へ = 学習・推論 bootstrapして fitして 結果をnest & tidyにして
回帰係数のサンプリング分布から 最善モデルの選択
料理人 から話を聞く= レシピ,データ逆引き #さっき調理fitした結果 #flights_fit <- # flights_wflow %>% #
fit(data = train_data) #食材教えてぇな flights_fit %>% pull_workflow_mold() #レシピ教えてぇな flights_fit %>% pull_workflow_prepped_recipe() %>% broom::tidy() flights_fit %>% pull_workflow_preprocessor() %>% broom::tidy()
#評価結果は? flights_pred <- predict(flights_fit, test_data, type = "prob") %>% bind_cols(test_data
%>% select(arr_delay,time_hour,flight)) flights_pred %>% roc_curve(truth = arr_delay, .pred_late) %>% autoplot() 世間的な評価 口コミ 評価 を調べる= 評価指標の確認
評価 を調べる= 評価指標の確認 Tidymodelsのpredict思想 ・ 入 力 デ ー タ
と 同 じ だ け の p r e d を ( 行 数 一 致 、 b i n d _ c o l で き る ) ・ I D 列 を 常 に 隣 に 保 持 で き る よ う に ・ 列 名 は 「 . p r e d 」 で 被 り な く
Enjoy !
reference https://www.tidymodels.org/ https://rstudio-conf-2020.github.io/applied-ml/Part_3.html#1 https://unsplash.com/ https://www.tidyverse.org/blog/2020/02/themis-0-1-0/