Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
階層、非階層クラスタリング
Search
Ringa_hyj
January 06, 2021
Science
0
140
階層、非階層クラスタリング
Ringa_hyj
January 06, 2021
Tweet
Share
More Decks by Ringa_hyj
See All by Ringa_hyj
DVCによるデータバージョン管理
ringa_hyj
0
190
deeplakeによる大規模データのバージョン管理と深層学習フレームワークとの接続
ringa_hyj
0
82
Hydraを使った設定ファイル管理とoptunaプラグインでのパラメータ探索
ringa_hyj
0
150
ClearMLで行うAIプロジェクトの管理(レポート,最適化,再現,デプロイ,オーケストレーション)
ringa_hyj
0
150
Catching up with the tidymodels.[Japan.R 2021 LT]
ringa_hyj
3
850
多次元尺度法MDS
ringa_hyj
0
310
因子分析(仮)
ringa_hyj
0
160
tidymodels紹介「モデリング過程料理で表現できる説」
ringa_hyj
0
460
深層学習をつかった画像スタイル変換の話と今までの歴史
ringa_hyj
0
450
Other Decks in Science
See All in Science
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
0
130
NDCG is NOT All I Need
statditto
2
2.5k
風の力で振れ幅が大きくなる振り子!? 〜タコマナローズ橋はなぜ落ちたのか〜
syotasasaki593876
1
160
機械学習 - SVM
trycycle
PRO
1
940
データベース02: データベースの概念
trycycle
PRO
2
980
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
1k
イロレーティングを活用した関東大学サッカーの定量的実力評価 / A quantitative performance evaluation of Kanto University Football Association using Elo rating
konakalab
0
140
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
0
120
HajimetenoLT vol.17
hashimoto_kei
1
110
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
1
210
次代のデータサイエンティストへ~スキルチェックリスト、タスクリスト更新~
datascientistsociety
PRO
2
19k
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
240
Featured
See All Featured
The World Runs on Bad Software
bkeepers
PRO
72
12k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Producing Creativity
orderedlist
PRO
348
40k
Building Applications with DynamoDB
mza
96
6.8k
Documentation Writing (for coders)
carmenintech
76
5.2k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
Why Our Code Smells
bkeepers
PRO
340
57k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.2k
Transcript
クラスター分析、クラスタリング、数値分類(toxonomy) 外的基準の無い状態でデータを集合にする手法 n個体をk群に分ける組み合わせの「総数」は 「第二スターリング数」で計算できる ※二項係数とよく似ているため、nCkになぞらえてnSkとあらわされる。 ※パスカルの三角形とも似ているが、単純に数列として求まるものではない。 , = 1 !
=0 −1 1 −
階層的手法 距離、類似度といった評価値から、近いものを順にまとめていく 凝集型階層的分類法とよばれたりする あと分枝型とか。 例:最近傍,最遠法、重心法、メディアン、加重平均、可変法、ウォード法 重心法: データ点ごとのユークリッド距離を計算 一番近い二点の重心(平均)をもとめ、二点を一点に置き換える。 これを繰り返す。 どのデータを結合したとき、重心がいくつであったか?を樹状にplotする←デンドログラム
樹状のなかでどの枝で切るか(クラスタをいくつにするか)を決める ※ユークリッドの他にメディアンなどを使ってもいいが、その場合「距離の逆転」が起こる
非階層的手法 階層以外の手法たち 例:k平均、ファジィc平均,ISODATA法 など 確率分布をクラスタと考えるので、混合分布ガウスモデルもこちらの分類 ヒストグラムで2分割: テストの点数を上位と下位に分けるとする。 まず並べる ヒストグラムを書いて谷で縦に切り2クラスに分ける (群間分散と郡内分散の比の最大化を目指す
群内/群間 の比が最大になるときが、最も谷が深い地点) k平均: データに適当にクラスを割り振る クラス内の平均を計算し、これに近いものを順にラベルつけなおしする また平均、収束するまで繰り返し ※初期値に依存、外れ値に弱い、シングルトン(ひとつだけのクラス)ができる
混合正規分布モデル いくつかの正規分布が背景に存在すると考え、 データから最尤法によってどの正規分布に属しているかを分ける EM法によって求めるが、長くなるので別記する(つもり) クラス数(いくつの正規分布が潜んでいるか)はクラスタリングあるあるだが、 AICによって決めたり、経験だったり
クラスタリングでの距離の公理 dij が0以上である dii=0 同じ点の距離は0 dij=dji 距離は方向で変化しない dij <= dik
+ djk 三角不等式が成り立つ ここまでを「計量的な距離」の公理 dij <= max(dik,djk) 超距離不等式が成り立つ これを加えると「超計量な距離」の公理 別称:ウルトラメトリック これを満たさないものを 非計量的な距離 とよぶ
距離の測り方 絶対距離、チェビシェフ、ユークリッド、平均ユークリッド、ミンコフスキー 類似度の測り方 相関係数、余弦係数 質的データは距離は考えられない。 対応分析の数量化得点を使って無理やり数値にしてから扱う場合は時々ある
あ