Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
iclr2020deepsemi-supervisedanomalydetectionyama...
Search
Yamato.OKAMOTO
June 14, 2020
Technology
0
110
iclr2020deepsemi-supervisedanomalydetectionyamatookamoto-200531022507.pdf
Yamato.OKAMOTO
June 14, 2020
Tweet
Share
More Decks by Yamato.OKAMOTO
See All by Yamato.OKAMOTO
いまAI組織が求める企画開発エンジニアとは?
roadroller
2
1.4k
Slide ICCV2023 Constructing Image Text Pair Dataset from Books
roadroller
0
78
第11回 全日本コンピュータビジョン勉強会 CVPR2022 "A Self-Supervised Descriptor for Image Copy Detection"
roadroller
0
580
第9回 全日本コンピュータビジョン勉強会 発表資料
roadroller
0
590
第七回全日本コンピュータビジョン勉強会 A Multiplexed Network for End-to-End, Multilingual OCR
roadroller
1
920
部下のマネジメントはAI開発に学べ
roadroller
0
130
Domain Generalization via Model-Agnostic Learning of Semantic Features NeurIPS’19 読み会 in 京都
roadroller
0
240
ICML’2019 読み会in京都 Federated Learningの研究動向
roadroller
0
78
CVPR2019@Long Beach 参加速報(本会議)
roadroller
0
110
Other Decks in Technology
See All in Technology
Agent Mode とは?GitHub Copilot の新機能を探る
lescoggi
1
160
Streamlitの細かい話
nishikawadaisuke
12
1.6k
「backlog-exporter」とAIの連携による業務効率化
shuntatoda
0
400
移行できそうでやりきれなかった 10年超えのシステムを葬るための戦略 / phper-kaigi-2025-ryu
carta_engineering
0
630
PHPStan をできる限り高速化してみる
colopl
0
180
Javaの新しめの機能を知ったかぶれるようになる話 #kanjava
irof
1
410
ドメインイベントを活用したPHPコードのリファクタリング
kajitack
1
600
パスキーでのログインを 実装してみよう!
hibiki_cube
0
280
RubyKaigi で得た課題解決法・美意識・モチベーション
morihirok
0
150
EMの仕事、あるいは顧客価値創出のアーキテクト
radiocat
0
110
RF問の対策をした話
bata_24
0
140
Github Copilot Chatは本日よりケ◯ロ軍曹でありま〜〜〜すッ!!!(たぶん)
yu_yukk_y
1
120
Featured
See All Featured
A Philosophy of Restraint
colly
203
16k
Writing Fast Ruby
sferik
628
61k
The Cult of Friendly URLs
andyhume
78
6.3k
Scaling GitHub
holman
459
140k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Measuring & Analyzing Core Web Vitals
bluesmoon
6
290
Unsuck your backbone
ammeep
669
57k
Testing 201, or: Great Expectations
jmmastey
42
7.3k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
4
430
Six Lessons from altMBA
skipperchong
27
3.7k
Designing for Performance
lara
605
69k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Transcript
2020/6/14 Yamato OKAMOTO ICLRΦϯϥΠϯಡΈձ Deep Semi-supervised Anomaly Detection
ࣗݾհʢ͘!!ʣ ɹԬຊେʢ͓͔ͱ·ͱʣ • ژେֶඒೱݚڀࣨͰύλʔϯೝࣝΛݚڀͯ͠म࢜՝ఔमྃ • ΦϜϩϯͰ৽نࣄۀΛܦݧޙɺ͍·ࣾձγεςϜࣄۀ෦ͷݚڀॴϦʔμʔ • ເژΛϙετɾγϦίϯόϨʔʹ͢Δ͜ͱɺؔͷίϛϡχςΟΛڧԽ͍ͨ͠ ɹ㱺 ژͷมਓύϫʔΛੈքʹΒ͠Ί͍ͨ
Twitter : RoadRoller_DESU ҆৺҆શͳࣾձͷ࣮ݱʹ͚ͯɺ ࠷ۙ Anomaly Detection ʹڵຯΞϦ
Anomaly Detection ͋Δ͋Δ ఆٛࠔ • ҟৗʹ༷ʑͳόϦΤʔγϣϯ͕͋Δ • ҟৗݕग़͍͚ͨ͠ͲʮWhat is ҟৗʁʯ͕ఆٛͰ͖ͳ͍
ֶशσʔλ͕ೖखࠔ • ҟৗ໓ଟʹൃੜ͠ͳ͍ʢ※ සൟʹൃੜ͢ΔΠϕϯτҟৗ͡Όͳ༷ͯ͘ʣ • ѹతʹҟৗσʔλ͕ෆͯ͠ػցֶश͕ࠔ ैདྷख๏ɿਖ਼ৗΛఆٛ͢Δ • ʮWhat is ҟৗʁʯͷఆٛΛఘΊΔɺҟৗσʔλͷֶशఘΊΔ • ͦͷΘΓʮWhat is ਖ਼ৗʁʯͷఆٛΛֶशͯ͠ɺʮNot ਖ਼ৗʯΛҟৗͱఆ͢Δ
Anomaly Detection ͷैདྷݚڀ Deep One-Class Classification (ICML’18) • ਖ਼ৗσʔλͷΈΛ༻͍ͯɺClassifierͳΓAutoEncoderͳΓΛैདྷ௨Γʹֶश •
͜ͷͱ͖ɺಛྔ͕࣍ݩ෦ۭؒʹऩଋ͢ΔΑ͏LOSSΛՃ͑Δ • ਖ਼ৗσʔλͳΒٿʹ͢ΔͣͳͷͰɺٿ͔Β֎ΕͨσʔλΛҟৗͱఆ͢Δ ୈҰ߲ʹΑͬͯٿʹ͕ԡ͠ࠐ·ΕΔ cɿ ٿͷத৺ʢͨͩ͠≠0ʣ nɿֶश͢Δਖ਼ৗσʔλͷ
Anomaly Detection ͷධՁ؍ ͲΕ͚ͩਖ਼֬ʹҟৗΛݕͰ͖͔ͨʁ • ਖ਼ৗσʔλΛਖ਼ৗͱఆͯ͠ɺҟৗσʔλΛҟৗͱఆ͢Δਫ਼ ԼྲྀλεΫΛअຐ͠ͳ͍͔ʁ • ԼྲྀλεΫ͕͋Δ߹ɺҟৗݕػೳͷՃʹΑͬͯѱӨڹ͕ͳ͍͔Ͳ͏͔ •
ྫ͑ɺ10ΫϥεͷࣈࣝผثʹɺਤܗͳͲࣈҎ֎͕ೖྗ͞Εͨͱ͖ҟৗͱఆ͢Δػ ೳΛ͚Ճ͍͑ͨͤͰɺैདྷͷ10Ϋϥεࣝผੑೳ͕Լ͢ΔͱࠔΔ ad-hoc͔post-hoc͔ʁ • ҟৗݕ͢ΔͨΊʹϞσϧߏֶशํ๏·Ͱม͑Δඞཁ͕͋Δ͔ʁ • ·ͨɺLOSSΛޙ͔Β͚͚̍ͭͩͯ͠Ճֶश͢Δ͚ͩͰOK͔ʁ • ͲͪΒ͕ྑ͍ѱ͍ͳͲҰ֓ʹݴ͑ͳ͍͕ɺpost-hocͷํ͕ѻ͍͍͢ɻ
հจͷ֓ཁ ʮSemi-supervisedʹֶश͠Α͏ʂʯ Anomaly Detection ͷݚڀUnsupervised͕ओྲྀͷΑ͏ͩ Ͱɺֶश༻ͷҟৗσʔλ͕ೖखࠔͩͱͯ͠ɺ ӡ༻Λଓ͚ͯͨΒҟৗσʔλʹ͍ͣΕग़ձ͏ͣ ͳΒɺͦΕΒগྔͷҟৗσʔλΛͬͯɺ Semi-supervisedʹֶशͨ͠ํ͕ྑ͍ͷͰʁ ※Semi-supervisedͷAnomaly
Detectionݚڀඇৗʹগͳ͍
ఏҊख๏ ʮLOSSʹ߲Λ̍ͭՃ͠·ͨ͠ʯ Deep One-Class Classification (ICML’18) ͷLOSSʹSemi-supervisedͷ߲Λ̍ͭՃ • ࣮ಉ͡ஶऀͰͨ͠ɻࣗͷݚڀΛࣗͰΞοϓσʔτͨ͠ܗʹͳΔɻ ͠ҟৗσʔλʹग़ձͬͨΒɺ
ٿͷ֎ଆʹߦ͘Α͏ֶश͢Δ mɿsemi-supervisedʹֶश͢Δσʔλ yj ɿਖ਼ৗorҟৗͷϥϕϧ
࣮ݧ݁Ռ ॎ࣠ɿҟৗσʔλͷݕग़ੑೳ ʢHigher is Betterʣ Unsupervised Semi-supervised ԣ࣠ɿSemi-supervisedͰڭࢣ͖ͷҟৗσʔλΛֶशׂͨ͠߹ ఏҊख๏ MNISTɺFashion-MNISTɺCIFAR-10ͷσʔληοτͰධՁ
• ̍Ϋϥεͱਖ਼ৗͱఆٛͯ͠ɺAutoEncoderʴఏҊख๏ͰಛྔදݱΛֶश • Γͷ̕ΫϥεΛೖྗͨ͠ͱ͖ɺҟৗͱఆͰ͖Δ͔Ͳ͏͔ධՁ ੑೳվળΛ֬ೝ
·ͱΊͱߟ ਂֶशʹΑΔ Semi-supervised ͳ Anomaly Detection ख๏ΛఏҊ • ॳΊͯͰͳ͍ͱࢥ͏͕ɺਂֶशʹΑΔAnomaly DetectionͰsemi-supervised͍͠
• ͔ͨ͠ʹࣾձ࣮Λߟ͑Δͱɺ͜ͷઃఆద • ख๏γϯϓϧͰɺpost-hocͳͷͰѻ͍͍͢ • ࠓճԼྲྀλεΫ͕AE͕ͩͬͨɺClassificationͩͱͲ͏ͳΔ͔ʁ • Anomaly DetectionͷධՁσʔληοτͬͯଞʹͳ͍ͷ͔ͳɺɺɺɺ ʢ͍ͭ·ͰMNISTʹΑΔධՁ͕ଓ͘ͷͩΖ͏͔ʣ