Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
iclr2020deepsemi-supervisedanomalydetectionyama...
Search
Yamato.OKAMOTO
June 14, 2020
Technology
0
140
iclr2020deepsemi-supervisedanomalydetectionyamatookamoto-200531022507.pdf
Yamato.OKAMOTO
June 14, 2020
Tweet
Share
More Decks by Yamato.OKAMOTO
See All by Yamato.OKAMOTO
いまAI組織が求める企画開発エンジニアとは?
roadroller
2
1.5k
Slide ICCV2023 Constructing Image Text Pair Dataset from Books
roadroller
0
110
第11回 全日本コンピュータビジョン勉強会 CVPR2022 "A Self-Supervised Descriptor for Image Copy Detection"
roadroller
0
640
第9回 全日本コンピュータビジョン勉強会 発表資料
roadroller
0
630
第七回全日本コンピュータビジョン勉強会 A Multiplexed Network for End-to-End, Multilingual OCR
roadroller
1
960
部下のマネジメントはAI開発に学べ
roadroller
0
160
Domain Generalization via Model-Agnostic Learning of Semantic Features NeurIPS’19 読み会 in 京都
roadroller
0
280
ICML’2019 読み会in京都 Federated Learningの研究動向
roadroller
0
110
CVPR2019@Long Beach 参加速報(本会議)
roadroller
0
130
Other Decks in Technology
See All in Technology
オブザーバビリティが育むシステム理解と好奇心
maruloop
3
1.7k
JSConf JPのwebsiteをGatsbyからNext.jsに移行した話 - Next.jsの多言語静的サイトと課題
leko
2
200
可観測性は開発環境から、開発環境にもオブザーバビリティ導入のススメ
layerx
PRO
4
2.2k
Kotlinで型安全にバイテンポラルデータを扱いたい! ReladomoラッパーをAIと実装してみた話
itohiro73
3
110
設計に疎いエンジニアでも始めやすいアーキテクチャドキュメント
phaya72
2
1.6k
Amazon Q Developer CLIをClaude Codeから使うためのベストプラクティスを考えてみた
dar_kuma_san
0
140
「タコピーの原罪」から学ぶ間違った”支援” / the bad support of Takopii
piyonakajima
0
160
[re:Inent2025事前勉強会(有志で開催)] re:Inventで見つけた人生をちょっと変えるコツ
sh_fk2
1
1k
AIがコードを書いてくれるなら、新米エンジニアは何をする? / komekaigi2025
nkzn
20
12k
東京大学「Agile-X」のFPGA AIデザインハッカソンを制したソニーのAI最適化
sony
0
170
20251027_findyさん_音声エージェントLT
almondo_event
2
500
AI機能プロジェクト炎上の 3つのしくじりと学び
nakawai
0
170
Featured
See All Featured
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
The Language of Interfaces
destraynor
162
25k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Practical Orchestrator
shlominoach
190
11k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.7k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.7k
Unsuck your backbone
ammeep
671
58k
Facilitating Awesome Meetings
lara
57
6.6k
Embracing the Ebb and Flow
colly
88
4.9k
Code Review Best Practice
trishagee
72
19k
Transcript
2020/6/14 Yamato OKAMOTO ICLRΦϯϥΠϯಡΈձ Deep Semi-supervised Anomaly Detection
ࣗݾհʢ͘!!ʣ ɹԬຊେʢ͓͔ͱ·ͱʣ • ژେֶඒೱݚڀࣨͰύλʔϯೝࣝΛݚڀͯ͠म࢜՝ఔमྃ • ΦϜϩϯͰ৽نࣄۀΛܦݧޙɺ͍·ࣾձγεςϜࣄۀ෦ͷݚڀॴϦʔμʔ • ເژΛϙετɾγϦίϯόϨʔʹ͢Δ͜ͱɺؔͷίϛϡχςΟΛڧԽ͍ͨ͠ ɹ㱺 ژͷมਓύϫʔΛੈքʹΒ͠Ί͍ͨ
Twitter : RoadRoller_DESU ҆৺҆શͳࣾձͷ࣮ݱʹ͚ͯɺ ࠷ۙ Anomaly Detection ʹڵຯΞϦ
Anomaly Detection ͋Δ͋Δ ఆٛࠔ • ҟৗʹ༷ʑͳόϦΤʔγϣϯ͕͋Δ • ҟৗݕग़͍͚ͨ͠ͲʮWhat is ҟৗʁʯ͕ఆٛͰ͖ͳ͍
ֶशσʔλ͕ೖखࠔ • ҟৗ໓ଟʹൃੜ͠ͳ͍ʢ※ සൟʹൃੜ͢ΔΠϕϯτҟৗ͡Όͳ༷ͯ͘ʣ • ѹతʹҟৗσʔλ͕ෆͯ͠ػցֶश͕ࠔ ैདྷख๏ɿਖ਼ৗΛఆٛ͢Δ • ʮWhat is ҟৗʁʯͷఆٛΛఘΊΔɺҟৗσʔλͷֶशఘΊΔ • ͦͷΘΓʮWhat is ਖ਼ৗʁʯͷఆٛΛֶशͯ͠ɺʮNot ਖ਼ৗʯΛҟৗͱఆ͢Δ
Anomaly Detection ͷैདྷݚڀ Deep One-Class Classification (ICML’18) • ਖ਼ৗσʔλͷΈΛ༻͍ͯɺClassifierͳΓAutoEncoderͳΓΛैདྷ௨Γʹֶश •
͜ͷͱ͖ɺಛྔ͕࣍ݩ෦ۭؒʹऩଋ͢ΔΑ͏LOSSΛՃ͑Δ • ਖ਼ৗσʔλͳΒٿʹ͢ΔͣͳͷͰɺٿ͔Β֎ΕͨσʔλΛҟৗͱఆ͢Δ ୈҰ߲ʹΑͬͯٿʹ͕ԡ͠ࠐ·ΕΔ cɿ ٿͷத৺ʢͨͩ͠≠0ʣ nɿֶश͢Δਖ਼ৗσʔλͷ
Anomaly Detection ͷධՁ؍ ͲΕ͚ͩਖ਼֬ʹҟৗΛݕͰ͖͔ͨʁ • ਖ਼ৗσʔλΛਖ਼ৗͱఆͯ͠ɺҟৗσʔλΛҟৗͱఆ͢Δਫ਼ ԼྲྀλεΫΛअຐ͠ͳ͍͔ʁ • ԼྲྀλεΫ͕͋Δ߹ɺҟৗݕػೳͷՃʹΑͬͯѱӨڹ͕ͳ͍͔Ͳ͏͔ •
ྫ͑ɺ10ΫϥεͷࣈࣝผثʹɺਤܗͳͲࣈҎ֎͕ೖྗ͞Εͨͱ͖ҟৗͱఆ͢Δػ ೳΛ͚Ճ͍͑ͨͤͰɺैདྷͷ10Ϋϥεࣝผੑೳ͕Լ͢ΔͱࠔΔ ad-hoc͔post-hoc͔ʁ • ҟৗݕ͢ΔͨΊʹϞσϧߏֶशํ๏·Ͱม͑Δඞཁ͕͋Δ͔ʁ • ·ͨɺLOSSΛޙ͔Β͚͚̍ͭͩͯ͠Ճֶश͢Δ͚ͩͰOK͔ʁ • ͲͪΒ͕ྑ͍ѱ͍ͳͲҰ֓ʹݴ͑ͳ͍͕ɺpost-hocͷํ͕ѻ͍͍͢ɻ
հจͷ֓ཁ ʮSemi-supervisedʹֶश͠Α͏ʂʯ Anomaly Detection ͷݚڀUnsupervised͕ओྲྀͷΑ͏ͩ Ͱɺֶश༻ͷҟৗσʔλ͕ೖखࠔͩͱͯ͠ɺ ӡ༻Λଓ͚ͯͨΒҟৗσʔλʹ͍ͣΕग़ձ͏ͣ ͳΒɺͦΕΒগྔͷҟৗσʔλΛͬͯɺ Semi-supervisedʹֶशͨ͠ํ͕ྑ͍ͷͰʁ ※Semi-supervisedͷAnomaly
Detectionݚڀඇৗʹগͳ͍
ఏҊख๏ ʮLOSSʹ߲Λ̍ͭՃ͠·ͨ͠ʯ Deep One-Class Classification (ICML’18) ͷLOSSʹSemi-supervisedͷ߲Λ̍ͭՃ • ࣮ಉ͡ஶऀͰͨ͠ɻࣗͷݚڀΛࣗͰΞοϓσʔτͨ͠ܗʹͳΔɻ ͠ҟৗσʔλʹग़ձͬͨΒɺ
ٿͷ֎ଆʹߦ͘Α͏ֶश͢Δ mɿsemi-supervisedʹֶश͢Δσʔλ yj ɿਖ਼ৗorҟৗͷϥϕϧ
࣮ݧ݁Ռ ॎ࣠ɿҟৗσʔλͷݕग़ੑೳ ʢHigher is Betterʣ Unsupervised Semi-supervised ԣ࣠ɿSemi-supervisedͰڭࢣ͖ͷҟৗσʔλΛֶशׂͨ͠߹ ఏҊख๏ MNISTɺFashion-MNISTɺCIFAR-10ͷσʔληοτͰධՁ
• ̍Ϋϥεͱਖ਼ৗͱఆٛͯ͠ɺAutoEncoderʴఏҊख๏ͰಛྔදݱΛֶश • Γͷ̕ΫϥεΛೖྗͨ͠ͱ͖ɺҟৗͱఆͰ͖Δ͔Ͳ͏͔ධՁ ੑೳվળΛ֬ೝ
·ͱΊͱߟ ਂֶशʹΑΔ Semi-supervised ͳ Anomaly Detection ख๏ΛఏҊ • ॳΊͯͰͳ͍ͱࢥ͏͕ɺਂֶशʹΑΔAnomaly DetectionͰsemi-supervised͍͠
• ͔ͨ͠ʹࣾձ࣮Λߟ͑Δͱɺ͜ͷઃఆద • ख๏γϯϓϧͰɺpost-hocͳͷͰѻ͍͍͢ • ࠓճԼྲྀλεΫ͕AE͕ͩͬͨɺClassificationͩͱͲ͏ͳΔ͔ʁ • Anomaly DetectionͷධՁσʔληοτͬͯଞʹͳ͍ͷ͔ͳɺɺɺɺ ʢ͍ͭ·ͰMNISTʹΑΔධՁ͕ଓ͘ͷͩΖ͏͔ʣ