Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
iclr2020deepsemi-supervisedanomalydetectionyama...
Search
Yamato.OKAMOTO
June 14, 2020
Technology
0
150
iclr2020deepsemi-supervisedanomalydetectionyamatookamoto-200531022507.pdf
Yamato.OKAMOTO
June 14, 2020
Tweet
Share
More Decks by Yamato.OKAMOTO
See All by Yamato.OKAMOTO
いまAI組織が求める企画開発エンジニアとは?
roadroller
2
1.6k
Slide ICCV2023 Constructing Image Text Pair Dataset from Books
roadroller
0
130
第11回 全日本コンピュータビジョン勉強会 CVPR2022 "A Self-Supervised Descriptor for Image Copy Detection"
roadroller
0
660
第9回 全日本コンピュータビジョン勉強会 発表資料
roadroller
0
650
第七回全日本コンピュータビジョン勉強会 A Multiplexed Network for End-to-End, Multilingual OCR
roadroller
1
970
部下のマネジメントはAI開発に学べ
roadroller
0
170
Domain Generalization via Model-Agnostic Learning of Semantic Features NeurIPS’19 読み会 in 京都
roadroller
0
290
ICML’2019 読み会in京都 Federated Learningの研究動向
roadroller
0
120
CVPR2019@Long Beach 参加速報(本会議)
roadroller
0
140
Other Decks in Technology
See All in Technology
20251203_AIxIoTビジネス共創ラボ_第4回勉強会_BP山崎.pdf
iotcomjpadmin
0
170
投資戦略を量産せよ 2 - マケデコセミナー(2025/12/26)
gamella
0
560
自己管理型チームと個人のセルフマネジメント 〜モチベーション編〜
kakehashi
PRO
2
370
Everything As Code
yosuke_ai
0
460
あの夜、私たちは「人間」に戻った。 ── 災害ユートピア、贈与、そしてアジャイルの再構築 / 20260108 Hiromitsu Akiba
shift_evolve
PRO
0
190
Strands Agents × インタリーブ思考 で変わるAIエージェント設計 / Strands Agents x Interleaved Thinking AI Agents
takanorig
6
2.5k
AIBuildersDay_track_A_iidaxs
iidaxs
4
1.7k
「アウトプット脳からユーザー価値脳へ」がそんなに簡単にできたら苦労しない #RSGT2026
aki_iinuma
5
1.3k
1万人を変え日本を変える!!多層構造型ふりかえりの大規模組織変革 / 20260108 Kazuki Mori
shift_evolve
PRO
3
310
BidiAgent と Nova 2 Sonic から考える音声 AI について
yama3133
2
140
日本Rubyの会: これまでとこれから
snoozer05
PRO
6
250
TED_modeki_共創ラボ_20251203.pdf
iotcomjpadmin
0
190
Featured
See All Featured
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
70k
How GitHub (no longer) Works
holman
316
140k
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1.1k
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
130
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Heart Work Chapter 1 - Part 1
lfama
PRO
3
35k
Beyond borders and beyond the search box: How to win the global "messy middle" with AI-driven SEO
davidcarrasco
0
26
Music & Morning Musume
bryan
46
7k
How to Talk to Developers About Accessibility
jct
1
93
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
51k
Leo the Paperboy
mayatellez
0
1.3k
Transcript
2020/6/14 Yamato OKAMOTO ICLRΦϯϥΠϯಡΈձ Deep Semi-supervised Anomaly Detection
ࣗݾհʢ͘!!ʣ ɹԬຊେʢ͓͔ͱ·ͱʣ • ژେֶඒೱݚڀࣨͰύλʔϯೝࣝΛݚڀͯ͠म࢜՝ఔमྃ • ΦϜϩϯͰ৽نࣄۀΛܦݧޙɺ͍·ࣾձγεςϜࣄۀ෦ͷݚڀॴϦʔμʔ • ເژΛϙετɾγϦίϯόϨʔʹ͢Δ͜ͱɺؔͷίϛϡχςΟΛڧԽ͍ͨ͠ ɹ㱺 ژͷมਓύϫʔΛੈքʹΒ͠Ί͍ͨ
Twitter : RoadRoller_DESU ҆৺҆શͳࣾձͷ࣮ݱʹ͚ͯɺ ࠷ۙ Anomaly Detection ʹڵຯΞϦ
Anomaly Detection ͋Δ͋Δ ఆٛࠔ • ҟৗʹ༷ʑͳόϦΤʔγϣϯ͕͋Δ • ҟৗݕग़͍͚ͨ͠ͲʮWhat is ҟৗʁʯ͕ఆٛͰ͖ͳ͍
ֶशσʔλ͕ೖखࠔ • ҟৗ໓ଟʹൃੜ͠ͳ͍ʢ※ සൟʹൃੜ͢ΔΠϕϯτҟৗ͡Όͳ༷ͯ͘ʣ • ѹతʹҟৗσʔλ͕ෆͯ͠ػցֶश͕ࠔ ैདྷख๏ɿਖ਼ৗΛఆٛ͢Δ • ʮWhat is ҟৗʁʯͷఆٛΛఘΊΔɺҟৗσʔλͷֶशఘΊΔ • ͦͷΘΓʮWhat is ਖ਼ৗʁʯͷఆٛΛֶशͯ͠ɺʮNot ਖ਼ৗʯΛҟৗͱఆ͢Δ
Anomaly Detection ͷैདྷݚڀ Deep One-Class Classification (ICML’18) • ਖ਼ৗσʔλͷΈΛ༻͍ͯɺClassifierͳΓAutoEncoderͳΓΛैདྷ௨Γʹֶश •
͜ͷͱ͖ɺಛྔ͕࣍ݩ෦ۭؒʹऩଋ͢ΔΑ͏LOSSΛՃ͑Δ • ਖ਼ৗσʔλͳΒٿʹ͢ΔͣͳͷͰɺٿ͔Β֎ΕͨσʔλΛҟৗͱఆ͢Δ ୈҰ߲ʹΑͬͯٿʹ͕ԡ͠ࠐ·ΕΔ cɿ ٿͷத৺ʢͨͩ͠≠0ʣ nɿֶश͢Δਖ਼ৗσʔλͷ
Anomaly Detection ͷධՁ؍ ͲΕ͚ͩਖ਼֬ʹҟৗΛݕͰ͖͔ͨʁ • ਖ਼ৗσʔλΛਖ਼ৗͱఆͯ͠ɺҟৗσʔλΛҟৗͱఆ͢Δਫ਼ ԼྲྀλεΫΛअຐ͠ͳ͍͔ʁ • ԼྲྀλεΫ͕͋Δ߹ɺҟৗݕػೳͷՃʹΑͬͯѱӨڹ͕ͳ͍͔Ͳ͏͔ •
ྫ͑ɺ10ΫϥεͷࣈࣝผثʹɺਤܗͳͲࣈҎ֎͕ೖྗ͞Εͨͱ͖ҟৗͱఆ͢Δػ ೳΛ͚Ճ͍͑ͨͤͰɺैདྷͷ10Ϋϥεࣝผੑೳ͕Լ͢ΔͱࠔΔ ad-hoc͔post-hoc͔ʁ • ҟৗݕ͢ΔͨΊʹϞσϧߏֶशํ๏·Ͱม͑Δඞཁ͕͋Δ͔ʁ • ·ͨɺLOSSΛޙ͔Β͚͚̍ͭͩͯ͠Ճֶश͢Δ͚ͩͰOK͔ʁ • ͲͪΒ͕ྑ͍ѱ͍ͳͲҰ֓ʹݴ͑ͳ͍͕ɺpost-hocͷํ͕ѻ͍͍͢ɻ
հจͷ֓ཁ ʮSemi-supervisedʹֶश͠Α͏ʂʯ Anomaly Detection ͷݚڀUnsupervised͕ओྲྀͷΑ͏ͩ Ͱɺֶश༻ͷҟৗσʔλ͕ೖखࠔͩͱͯ͠ɺ ӡ༻Λଓ͚ͯͨΒҟৗσʔλʹ͍ͣΕग़ձ͏ͣ ͳΒɺͦΕΒগྔͷҟৗσʔλΛͬͯɺ Semi-supervisedʹֶशͨ͠ํ͕ྑ͍ͷͰʁ ※Semi-supervisedͷAnomaly
Detectionݚڀඇৗʹগͳ͍
ఏҊख๏ ʮLOSSʹ߲Λ̍ͭՃ͠·ͨ͠ʯ Deep One-Class Classification (ICML’18) ͷLOSSʹSemi-supervisedͷ߲Λ̍ͭՃ • ࣮ಉ͡ஶऀͰͨ͠ɻࣗͷݚڀΛࣗͰΞοϓσʔτͨ͠ܗʹͳΔɻ ͠ҟৗσʔλʹग़ձͬͨΒɺ
ٿͷ֎ଆʹߦ͘Α͏ֶश͢Δ mɿsemi-supervisedʹֶश͢Δσʔλ yj ɿਖ਼ৗorҟৗͷϥϕϧ
࣮ݧ݁Ռ ॎ࣠ɿҟৗσʔλͷݕग़ੑೳ ʢHigher is Betterʣ Unsupervised Semi-supervised ԣ࣠ɿSemi-supervisedͰڭࢣ͖ͷҟৗσʔλΛֶशׂͨ͠߹ ఏҊख๏ MNISTɺFashion-MNISTɺCIFAR-10ͷσʔληοτͰධՁ
• ̍Ϋϥεͱਖ਼ৗͱఆٛͯ͠ɺAutoEncoderʴఏҊख๏ͰಛྔදݱΛֶश • Γͷ̕ΫϥεΛೖྗͨ͠ͱ͖ɺҟৗͱఆͰ͖Δ͔Ͳ͏͔ධՁ ੑೳվળΛ֬ೝ
·ͱΊͱߟ ਂֶशʹΑΔ Semi-supervised ͳ Anomaly Detection ख๏ΛఏҊ • ॳΊͯͰͳ͍ͱࢥ͏͕ɺਂֶशʹΑΔAnomaly DetectionͰsemi-supervised͍͠
• ͔ͨ͠ʹࣾձ࣮Λߟ͑Δͱɺ͜ͷઃఆద • ख๏γϯϓϧͰɺpost-hocͳͷͰѻ͍͍͢ • ࠓճԼྲྀλεΫ͕AE͕ͩͬͨɺClassificationͩͱͲ͏ͳΔ͔ʁ • Anomaly DetectionͷධՁσʔληοτͬͯଞʹͳ͍ͷ͔ͳɺɺɺɺ ʢ͍ͭ·ͰMNISTʹΑΔධՁ͕ଓ͘ͷͩΖ͏͔ʣ