Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介 / Structure-based Knowledge Tracing: An In...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Atom
May 06, 2021
0
99
文献紹介 / Structure-based Knowledge Tracing: An Influence Propagation View
Atom
May 06, 2021
Tweet
Share
More Decks by Atom
See All by Atom
文献紹介 / Knowledge Tracing with GNN
roraidolaurent
0
100
文献紹介 / Non-Intrusive Parametric Reduced Order Models withHigh-Dimensional Inputs via Gradient-Free Active Subspace
roraidolaurent
0
60
ニューラルネットワークのベイズ推論 / Bayesian inference of neural networks
roraidolaurent
2
2.8k
Graph Convolutional Networks
roraidolaurent
0
240
文献紹介 / A Probabilistic Annotation Model for Crowdsourcing Coreference
roraidolaurent
0
78
文献紹介Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
roraidolaurent
0
120
文献紹介/ Bayesian Learning for Neural Dependency Parsing
roraidolaurent
0
130
ポッキー数列の加法定理 / Pocky number additon theorem
roraidolaurent
0
240
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
roraidolaurent
1
170
Featured
See All Featured
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
55
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
Abbi's Birthday
coloredviolet
1
4.8k
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
150
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.3k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
End of SEO as We Know It (SMX Advanced Version)
ipullrank
3
3.9k
4 Signs Your Business is Dying
shpigford
187
22k
Un-Boring Meetings
codingconduct
0
200
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
66
The #1 spot is gone: here's how to win anyway
tamaranovitovic
2
940
Faster Mobile Websites
deanohume
310
31k
Transcript
None
2
3
4
5
6
7
8
9
10 𝒙𝑡 = 𝑒𝑡 = 0に回答して不正解? 𝑒𝑡 = 0に回答して正解? 𝑒𝑡
= 1に回答して不正解? ⋮ 関係r ごとに埋め込み 関係r に関する一時的に用いる特徴量 注)ℎ𝑖 𝑡 ← ℎ 𝑖 𝑡,𝑇と更新されない.
11 𝑝𝑎𝑟𝑡𝑖𝑗 𝑟
12
13
14
15
16
17
18
19
20
21
22
23 1ステップのみの学習で得られた 影響ベクトル 𝐽𝑖 ∈ ℝ+𝑁として 概念間の影響ベクトルのコサイン類似度が 0.5以上のものにエッジを引いてクラスタリング
24
25