Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ポッキー数列の加法定理 / Pocky number additon theorem
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Atom
November 11, 2019
Education
0
230
ポッキー数列の加法定理 / Pocky number additon theorem
Atom
November 11, 2019
Tweet
Share
More Decks by Atom
See All by Atom
文献紹介 / Structure-based Knowledge Tracing: An Influence Propagation View
roraidolaurent
0
99
文献紹介 / Knowledge Tracing with GNN
roraidolaurent
0
100
文献紹介 / Non-Intrusive Parametric Reduced Order Models withHigh-Dimensional Inputs via Gradient-Free Active Subspace
roraidolaurent
0
60
ニューラルネットワークのベイズ推論 / Bayesian inference of neural networks
roraidolaurent
2
2.8k
Graph Convolutional Networks
roraidolaurent
0
240
文献紹介 / A Probabilistic Annotation Model for Crowdsourcing Coreference
roraidolaurent
0
76
文献紹介Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
roraidolaurent
0
120
文献紹介/ Bayesian Learning for Neural Dependency Parsing
roraidolaurent
0
120
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
roraidolaurent
1
160
Other Decks in Education
See All in Education
俺と地方勉強会 - KomeKaigi・地方勉強会への期待 -
pharaohkj
1
1.6k
悩める リーダー達に 届けたい書籍|レジリエントマネジメント 書籍イントロダクション-260126
mimoza60
0
140
【dip】「なりたい自分」に近づくための、「自分と向き合う」小さな振り返り
dip_tech
PRO
0
220
SJRC 2526
cbtlibrary
0
200
くまのココロンともぐらのロジ
frievea
0
150
HyRead2526
cbtlibrary
0
200
Web Search and SEO - Lecture 10 - Web Technologies (1019888BNR)
signer
PRO
2
3.1k
沖ハック~のみぞうさんとハッキングチャレンジ☆~
nomizone
1
570
RGBでも蛍光を!? / RayTracingCamp11
kugimasa
2
370
XML and Related Technologies - Lecture 7 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
Going over the Edge
jonoalderson
0
330
Human Perception and Cognition - Lecture 4 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
Featured
See All Featured
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Principles of Awesome APIs and How to Build Them.
keavy
128
17k
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
47
Writing Fast Ruby
sferik
630
62k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
WCS-LA-2024
lcolladotor
0
440
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
Transcript
1PDLZ OVNFSJDBMTFRVFODF 3FQVOJU OVNCFS`T BEEJUJPOUIFPSFN # &OHMJTI4FNJOBS /BHBPLB 6OJWFSTJUZ
PG 5FDIOPMPHZ "UPN :PTIJ[BXB
$POUFOUT *OUSPEVDUJPO (2) What is Pocky (Repunit) number ?
1PDLZ OVNCFS`T CBTJDUIFPSFN 1PDLZ OVNCFS`TBEEJUJPOUIPSFN $PODMVTJPO
5PEBZ /PWJT1PDLZ EBZ #ZUIFXBZ %PZPVLOPXBEEJUJPOUIFPSFN sin + = sin
cos + cos sin cos + = cos cos − sin sin 3 *OUSPEVDUJPO
'JCPOBDDJOVNCFS ,-. = ,-/ + , , 1 = 0,
/ = 1, . = 1, ⋯ 'JCPOBDDJOVNCFS`TBEEJUJPOUIFPSFN 5-6 = 5-/ 6 + 5 67/ &Y8 = /-9 = / : + . 9 = 1 ; 2 + 1 ; 3 = 5 4 *OUSPEVDUJPO
1PDLZ(Repunit) OVNCFS @A/1,, = , %FDJNBMTZTUFN 1 = 0, /
= 1, . = 11, : = 111, 9 = 1111, *TUIFSF1PDLZ OVNCFS`TBEEJUJPOUIFPSFN 5-6 = ? 5 *OUSPEVDUJPO
m n 0 1 2 3 4 5 10 0
1 11 111 1111 11111 9 0 1 10 91 820 820+9^4 8 0 1 9 73 585 585+8^4 7 0 1 8 57 400 400+7^4 6 0 1 7 43 256 256+6^4 5 0 1 6 31 156 156+5^4 4 0 1 5 21 85 341 3 0 1 4 13 40 121 2 0 1 3 7 15 31 1 0 1 2 3 4 5 6 What is Pocky (Repunit) number ? @,, (Ex. @A.,,A. = (11). = 3)
@,,-/ = @,, + , (@,,A1 = 0) @,, =
I JA1 ,7/ J = , − 1 − 1 , ∈ ℕ lim ,→Q @,,-/ @,, = , lim @→Q @-/,, @,, = 1 7 1PDLZ OVNCFS`T CBTJDUIFPSFN
@,,-. = @,,-/ + ,-/ = @,,-/ + (@,,-/ −
@,, ) R @,,-/ = 0 ; @,, + 1 ; @,,-/ @,,-. = −@,, + 1 + @,,-/ @,,-/ @,,-. = 0 1 − 1 + @,, @,,-/ 8 1PDLZ OVNCFS`TBEEJUJPOUIPSFN
@,, = @,, @,,-/ , ℛ = 0 1 −
1 + @,, = ℛ,@,,A1 @,,A1 = 0 1 9 1PDLZ OVNCFS`TBEEJUJPOUIPSFN
ℛ, = @,, = @,, @,,-/ = ℛ,@,,A1 = 0
1 = @,,7/ = ℛ,7/@,,A1 = ℛ,ℛ7/@,,A1 = − 1 0 = − 1 10 1PDLZ OVNCFS`TBEEJUJPOUIPSFN
ℛ, = −@,,7/ @,, −@,, @,,-/ ℛ5-6 = ℛ5ℛ6 −@,5-67/
@,5-6 −@,5-6 @,5-6-/ = −@,57/ @,5 −@,5 @,5-/ −@,67/ @,6 −@,6 @,6-/ @,5-6 = @,5 @,6-/ − @,57/ @,6 11 1PDLZ OVNCFS`TBEEJUJPOUIPSFN
Change → , → @,5-6 = @,5-/ @,6 − @,5
@,67/ &Y/1, /-9 = /1,. /1,9 − 10/1,/ /1,: = 11 ; 1111 − 10 ; 1 ; 111 = 12221 − 1110 = 11111 12 1PDLZ OVNCFS`TBEEJUJPOUIPSFN
., /-9 = .,. .,9 − 2.,/ .,: = 3
; 15 − 2 ; 1 ; 7 = 45 − 14 = 31 = (11111). ., .-: = .,: .,: − 2.,. .,. = 7 ; 7 − 2 ; 3 ; 3 = 49 − 18 = 31 = (11111). /, /-9 = /,. .,9 − /,/ /,: = 2 ; 4 − 1 ; 3 = 5 = (11111)/ 13 1PDLZ OVNCFS`TBEEJUJPOUIPSFN
"EEJUJPOUIFPSFN sin + = sin cos + cos sin cos
+ = cos cos − sin sin 5-6 = 5-/ 6 + 5 67/ @,5-6 = @,5-/ @,6 − @,5 @,67/ 14 $PODMVTJPO
ɾ1PDLZ OVNCFS`TBEEJUJPOUIFPSFNMJLF DPTJOFGVODUJPOJOUSJHPOPNFUSJDBEEJUJPOUIFPSFNT ɾ1PDLZ OVNCFS`TBEEJUJPOUIFPSFNJT FYUFOTJPOPG OBUVSBMOVNCFS`TUIBU 15 $PODMVTJPO
m n 0 1 2 3 4 5 10 0 1 11 111 1111 11111 1 0 1 2 3 4 5