Upgrade to Pro — share decks privately, control downloads, hide ads and more …

ポッキー数列の加法定理 / Pocky number additon theorem

Atom
November 11, 2019

ポッキー数列の加法定理 / Pocky number additon theorem

Atom

November 11, 2019
Tweet

More Decks by Atom

Other Decks in Education

Transcript

  1. 1PDLZ OVNFSJDBMTFRVFODF
    3FQVOJU OVNCFS`T BEEJUJPOUIFPSFN
    # &OHMJTI4FNJOBS

    /BHBPLB 6OJWFSTJUZ PG 5FDIOPMPHZ
    "UPN :PTIJ[BXB

    View Slide

  2. $POUFOUT

    *OUSPEVDUJPO
    (2) What is Pocky (Repunit) number ?

    1PDLZ OVNCFS`T CBTJDUIFPSFN

    1PDLZ OVNCFS`TBEEJUJPOUIPSFN

    $PODMVTJPO

    View Slide

  3. 5PEBZ /PWJT1PDLZ EBZ
    #ZUIFXBZ
    %PZPVLOPXBEEJUJPOUIFPSFN
    sin + = sin cos + cos sin
    cos + = cos cos − sin sin
    3

    *OUSPEVDUJPO

    View Slide

  4. 'JCPOBDDJOVNCFS
    ,-.
    = ,-/
    + ,
    , 1
    = 0, /
    = 1, .
    = 1, ⋯
    'JCPOBDDJOVNCFS`TBEEJUJPOUIFPSFN
    5-6
    = 5-/
    6
    + 5
    67/
    &Y8
    = /-9
    = /
    :
    + .
    9
    = 1 ; 2 + 1 ; 3 = 5
    4

    *OUSPEVDUJPO

    View Slide

  5. 1PDLZ(Repunit) OVNCFS
    @A/1,,
    = ,
    %FDJNBMTZTUFN

    1
    = 0, /
    = 1, .
    = 11, :
    = 111, 9
    = 1111,
    *TUIFSF1PDLZ OVNCFS`TBEEJUJPOUIFPSFN
    5-6
    = ?
    5

    *OUSPEVDUJPO

    View Slide

  6. m n 0 1 2 3 4 5
    10 0 1 11 111 1111 11111
    9 0 1 10 91 820 820+9^4
    8 0 1 9 73 585 585+8^4
    7 0 1 8 57 400 400+7^4
    6 0 1 7 43 256 256+6^4
    5 0 1 6 31 156 156+5^4
    4 0 1 5 21 85 341
    3 0 1 4 13 40 121
    2 0 1 3 7 15 31
    1 0 1 2 3 4 5
    6

    What is Pocky (Repunit) number ?
    @,,
    (Ex. @A.,,A.
    = (11).
    = 3)

    View Slide

  7. @,,-/
    = @,,
    + , (@,,A1
    = 0)
    @,,
    = I
    JA1
    ,7/
    J =
    , − 1
    − 1
    , ∈ ℕ
    lim
    ,→Q
    @,,-/
    @,,
    = , lim
    @→Q
    @-/,,
    @,,
    = 1
    7

    1PDLZ OVNCFS`T CBTJDUIFPSFN

    View Slide

  8. @,,-.
    = @,,-/
    + ,-/ = @,,-/
    + (@,,-/
    − @,,
    )
    R
    @,,-/
    = 0 ; @,,
    + 1 ; @,,-/
    @,,-.
    = −@,,
    + 1 + @,,-/
    @,,-/
    @,,-.
    =
    0 1
    − 1 +
    @,,
    @,,-/
    8

    1PDLZ OVNCFS`TBEEJUJPOUIPSFN

    View Slide

  9. @,,
    =
    @,,
    @,,-/
    , ℛ =
    0 1
    − 1 +
    @,,
    = ℛ,@,,A1
    @,,A1
    =
    0
    1
    9

    1PDLZ OVNCFS`TBEEJUJPOUIPSFN

    View Slide

  10. ℛ, =


    @,,
    =
    @,,
    @,,-/
    = ℛ,@,,A1
    =


    0
    1
    =


    @,,7/
    = ℛ,7/@,,A1
    = ℛ,ℛ7/@,,A1
    =



    1

    0
    = −
    1



    10

    1PDLZ OVNCFS`TBEEJUJPOUIPSFN

    View Slide

  11. ℛ, =
    −@,,7/
    @,,
    −@,,
    @,,-/
    ℛ5-6 = ℛ5ℛ6
    −@,5-67/
    @,5-6
    −@,5-6
    @,5-6-/
    =
    −@,57/
    @,5
    −@,5
    @,5-/
    −@,67/
    @,6
    −@,6
    @,6-/
    @,5-6
    = @,5
    @,6-/
    − @,57/
    @,6
    11

    1PDLZ OVNCFS`TBEEJUJPOUIPSFN

    View Slide

  12. Change → , →
    @,5-6
    = @,5-/
    @,6
    − @,5
    @,67/
    &Y/1, /-9
    = /1,.
    /1,9
    − 10/1,/
    /1,:
    = 11 ; 1111 − 10 ; 1 ; 111 = 12221 − 1110
    = 11111
    12

    1PDLZ OVNCFS`TBEEJUJPOUIPSFN

    View Slide

  13. ., /-9
    = .,.
    .,9
    − 2.,/
    .,:
    = 3 ; 15 − 2 ; 1 ; 7
    = 45 − 14 = 31 = (11111).
    ., .-:
    = .,:
    .,:
    − 2.,.
    .,.
    = 7 ; 7 − 2 ; 3 ; 3
    = 49 − 18 = 31 = (11111).
    /, /-9
    = /,.
    .,9
    − /,/
    /,:
    = 2 ; 4 − 1 ; 3
    = 5 = (11111)/
    13

    1PDLZ OVNCFS`TBEEJUJPOUIPSFN

    View Slide

  14. "EEJUJPOUIFPSFN
    sin + = sin cos + cos sin
    cos + = cos cos − sin sin
    5-6
    = 5-/
    6
    + 5
    67/
    @,5-6
    = @,5-/
    @,6
    − @,5
    @,67/
    14

    $PODMVTJPO

    View Slide

  15. ɾ1PDLZ OVNCFS`TBEEJUJPOUIFPSFNMJLF
    DPTJOFGVODUJPOJOUSJHPOPNFUSJDBEEJUJPOUIFPSFNT
    ɾ1PDLZ OVNCFS`TBEEJUJPOUIFPSFNJT
    FYUFOTJPOPG OBUVSBMOVNCFS`TUIBU
    15

    $PODMVTJPO
    m n 0 1 2 3 4 5
    10 0 1 11 111 1111 11111
    1 0 1 2 3 4 5

    View Slide