Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ポッキー数列の加法定理 / Pocky number additon theorem
Search
Atom
November 11, 2019
Education
0
210
ポッキー数列の加法定理 / Pocky number additon theorem
Atom
November 11, 2019
Tweet
Share
More Decks by Atom
See All by Atom
文献紹介 / Structure-based Knowledge Tracing: An Influence Propagation View
roraidolaurent
0
91
文献紹介 / Knowledge Tracing with GNN
roraidolaurent
0
97
文献紹介 / Non-Intrusive Parametric Reduced Order Models withHigh-Dimensional Inputs via Gradient-Free Active Subspace
roraidolaurent
0
56
ニューラルネットワークのベイズ推論 / Bayesian inference of neural networks
roraidolaurent
2
2.8k
Graph Convolutional Networks
roraidolaurent
0
230
文献紹介 / A Probabilistic Annotation Model for Crowdsourcing Coreference
roraidolaurent
0
69
文献紹介Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
roraidolaurent
0
100
文献紹介/ Bayesian Learning for Neural Dependency Parsing
roraidolaurent
0
120
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
roraidolaurent
1
150
Other Decks in Education
See All in Education
CSS3 and Responsive Web Design - Lecture 5 - Web Technologies (1019888BNR)
signer
PRO
1
2.9k
Avoin jakaminen ja Creative Commons -lisenssit
matleenalaakso
0
2k
Human Perception and Cognition - Lecture 4 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.2k
データで見る赤ちゃんの成長
syuchimu
0
320
Master of Applied Science & Engineering: Computer Science & Master of Science in Applied Informatics: Artificial Intelligence and Data Science
signer
PRO
0
830
Présentation_1ère_Spé_2025.pdf
bernhardsvt
0
400
探査機自作ゼミ2025スライド
sksat
3
820
日本の情報系社会人院生のリアル -JAIST 修士編-
yurikomium
1
130
Introdución ás redes
irocho
0
360
the difficulty into words
ukky86
0
150
仏教の源流からの奈良県中南和_奈良まほろば館‗飛鳥・藤原DAO/asuka-fujiwara_Saraswati
tkimura12
0
140
1014
cbtlibrary
0
460
Featured
See All Featured
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
Mobile First: as difficult as doing things right
swwweet
225
10k
Typedesign – Prime Four
hannesfritz
42
2.8k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
Done Done
chrislema
185
16k
Docker and Python
trallard
46
3.6k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
190
55k
Into the Great Unknown - MozCon
thekraken
40
2.1k
Building Applications with DynamoDB
mza
96
6.7k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
Transcript
1PDLZ OVNFSJDBMTFRVFODF 3FQVOJU OVNCFS`T BEEJUJPOUIFPSFN # &OHMJTI4FNJOBS /BHBPLB 6OJWFSTJUZ
PG 5FDIOPMPHZ "UPN :PTIJ[BXB
$POUFOUT *OUSPEVDUJPO (2) What is Pocky (Repunit) number ?
1PDLZ OVNCFS`T CBTJDUIFPSFN 1PDLZ OVNCFS`TBEEJUJPOUIPSFN $PODMVTJPO
5PEBZ /PWJT1PDLZ EBZ #ZUIFXBZ %PZPVLOPXBEEJUJPOUIFPSFN sin + = sin
cos + cos sin cos + = cos cos − sin sin 3 *OUSPEVDUJPO
'JCPOBDDJOVNCFS ,-. = ,-/ + , , 1 = 0,
/ = 1, . = 1, ⋯ 'JCPOBDDJOVNCFS`TBEEJUJPOUIFPSFN 5-6 = 5-/ 6 + 5 67/ &Y8 = /-9 = / : + . 9 = 1 ; 2 + 1 ; 3 = 5 4 *OUSPEVDUJPO
1PDLZ(Repunit) OVNCFS @A/1,, = , %FDJNBMTZTUFN 1 = 0, /
= 1, . = 11, : = 111, 9 = 1111, *TUIFSF1PDLZ OVNCFS`TBEEJUJPOUIFPSFN 5-6 = ? 5 *OUSPEVDUJPO
m n 0 1 2 3 4 5 10 0
1 11 111 1111 11111 9 0 1 10 91 820 820+9^4 8 0 1 9 73 585 585+8^4 7 0 1 8 57 400 400+7^4 6 0 1 7 43 256 256+6^4 5 0 1 6 31 156 156+5^4 4 0 1 5 21 85 341 3 0 1 4 13 40 121 2 0 1 3 7 15 31 1 0 1 2 3 4 5 6 What is Pocky (Repunit) number ? @,, (Ex. @A.,,A. = (11). = 3)
@,,-/ = @,, + , (@,,A1 = 0) @,, =
I JA1 ,7/ J = , − 1 − 1 , ∈ ℕ lim ,→Q @,,-/ @,, = , lim @→Q @-/,, @,, = 1 7 1PDLZ OVNCFS`T CBTJDUIFPSFN
@,,-. = @,,-/ + ,-/ = @,,-/ + (@,,-/ −
@,, ) R @,,-/ = 0 ; @,, + 1 ; @,,-/ @,,-. = −@,, + 1 + @,,-/ @,,-/ @,,-. = 0 1 − 1 + @,, @,,-/ 8 1PDLZ OVNCFS`TBEEJUJPOUIPSFN
@,, = @,, @,,-/ , ℛ = 0 1 −
1 + @,, = ℛ,@,,A1 @,,A1 = 0 1 9 1PDLZ OVNCFS`TBEEJUJPOUIPSFN
ℛ, = @,, = @,, @,,-/ = ℛ,@,,A1 = 0
1 = @,,7/ = ℛ,7/@,,A1 = ℛ,ℛ7/@,,A1 = − 1 0 = − 1 10 1PDLZ OVNCFS`TBEEJUJPOUIPSFN
ℛ, = −@,,7/ @,, −@,, @,,-/ ℛ5-6 = ℛ5ℛ6 −@,5-67/
@,5-6 −@,5-6 @,5-6-/ = −@,57/ @,5 −@,5 @,5-/ −@,67/ @,6 −@,6 @,6-/ @,5-6 = @,5 @,6-/ − @,57/ @,6 11 1PDLZ OVNCFS`TBEEJUJPOUIPSFN
Change → , → @,5-6 = @,5-/ @,6 − @,5
@,67/ &Y/1, /-9 = /1,. /1,9 − 10/1,/ /1,: = 11 ; 1111 − 10 ; 1 ; 111 = 12221 − 1110 = 11111 12 1PDLZ OVNCFS`TBEEJUJPOUIPSFN
., /-9 = .,. .,9 − 2.,/ .,: = 3
; 15 − 2 ; 1 ; 7 = 45 − 14 = 31 = (11111). ., .-: = .,: .,: − 2.,. .,. = 7 ; 7 − 2 ; 3 ; 3 = 49 − 18 = 31 = (11111). /, /-9 = /,. .,9 − /,/ /,: = 2 ; 4 − 1 ; 3 = 5 = (11111)/ 13 1PDLZ OVNCFS`TBEEJUJPOUIPSFN
"EEJUJPOUIFPSFN sin + = sin cos + cos sin cos
+ = cos cos − sin sin 5-6 = 5-/ 6 + 5 67/ @,5-6 = @,5-/ @,6 − @,5 @,67/ 14 $PODMVTJPO
ɾ1PDLZ OVNCFS`TBEEJUJPOUIFPSFNMJLF DPTJOFGVODUJPOJOUSJHPOPNFUSJDBEEJUJPOUIFPSFNT ɾ1PDLZ OVNCFS`TBEEJUJPOUIFPSFNJT FYUFOTJPOPG OBUVSBMOVNCFS`TUIBU 15 $PODMVTJPO
m n 0 1 2 3 4 5 10 0 1 11 111 1111 11111 1 0 1 2 3 4 5