$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介 / Knowledge Tracing with GNN
Search
Atom
December 04, 2020
0
97
文献紹介 / Knowledge Tracing with GNN
文献紹介と書いてあるが自分の用のメモ
公開しなくても良いかなと思ったが公開
Atom
December 04, 2020
Tweet
Share
More Decks by Atom
See All by Atom
文献紹介 / Structure-based Knowledge Tracing: An Influence Propagation View
roraidolaurent
0
94
文献紹介 / Non-Intrusive Parametric Reduced Order Models withHigh-Dimensional Inputs via Gradient-Free Active Subspace
roraidolaurent
0
59
ニューラルネットワークのベイズ推論 / Bayesian inference of neural networks
roraidolaurent
2
2.8k
Graph Convolutional Networks
roraidolaurent
0
230
文献紹介 / A Probabilistic Annotation Model for Crowdsourcing Coreference
roraidolaurent
0
71
文献紹介Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
roraidolaurent
0
110
文献紹介/ Bayesian Learning for Neural Dependency Parsing
roraidolaurent
0
120
ポッキー数列の加法定理 / Pocky number additon theorem
roraidolaurent
0
220
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
roraidolaurent
1
150
Featured
See All Featured
Music & Morning Musume
bryan
46
7k
Designing for humans not robots
tammielis
254
26k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
118
20k
Making Projects Easy
brettharned
120
6.5k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Agile that works and the tools we love
rasmusluckow
331
21k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.4k
Transcript
None
None
∈ , ∈ {0,1}2 ∈ {0,1} ∈ {0,1} + 1
≡ +1 = , , , = 1 , ⋯ , ⊆ × , ∈ ℝ× ∈ ∈ ℝ
None
∈ ℝ2× ∈ ℝ× () ∈ ℝ ∈
, ℎ
None
None
None
None
None
None
☓
None
None
∈ {0,1}
None
None
None
−1 から問題 (スキル をもつ)に正答確率を アテンションで求めるが, と同じスキルをもつ問題(例 )
の正誤情報 は −1 では失われている可能性が大きい. に関連する問題を選択し, その情報 についても アテンションをとる.
None
None
None
None
None
None
None