Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介 / Knowledge Tracing with GNN
Search
Atom
December 04, 2020
0
100
文献紹介 / Knowledge Tracing with GNN
文献紹介と書いてあるが自分の用のメモ
公開しなくても良いかなと思ったが公開
Atom
December 04, 2020
Tweet
Share
More Decks by Atom
See All by Atom
文献紹介 / Structure-based Knowledge Tracing: An Influence Propagation View
roraidolaurent
0
98
文献紹介 / Non-Intrusive Parametric Reduced Order Models withHigh-Dimensional Inputs via Gradient-Free Active Subspace
roraidolaurent
0
60
ニューラルネットワークのベイズ推論 / Bayesian inference of neural networks
roraidolaurent
2
2.8k
Graph Convolutional Networks
roraidolaurent
0
240
文献紹介 / A Probabilistic Annotation Model for Crowdsourcing Coreference
roraidolaurent
0
76
文献紹介Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
roraidolaurent
0
120
文献紹介/ Bayesian Learning for Neural Dependency Parsing
roraidolaurent
0
120
ポッキー数列の加法定理 / Pocky number additon theorem
roraidolaurent
0
220
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
roraidolaurent
1
160
Featured
See All Featured
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
170
My Coaching Mixtape
mlcsv
0
18
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
33
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1.1k
4 Signs Your Business is Dying
shpigford
187
22k
Crafting Experiences
bethany
0
24
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
80
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
720
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.9k
Why Our Code Smells
bkeepers
PRO
340
58k
Transcript
None
None
∈ , ∈ {0,1}2 ∈ {0,1} ∈ {0,1} + 1
≡ +1 = , , , = 1 , ⋯ , ⊆ × , ∈ ℝ× ∈ ∈ ℝ
None
∈ ℝ2× ∈ ℝ× () ∈ ℝ ∈
, ℎ
None
None
None
None
None
None
☓
None
None
∈ {0,1}
None
None
None
−1 から問題 (スキル をもつ)に正答確率を アテンションで求めるが, と同じスキルをもつ問題(例 )
の正誤情報 は −1 では失われている可能性が大きい. に関連する問題を選択し, その情報 についても アテンションをとる.
None
None
None
None
None
None
None