$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介 / Knowledge Tracing with GNN
Search
Atom
December 04, 2020
0
98
文献紹介 / Knowledge Tracing with GNN
文献紹介と書いてあるが自分の用のメモ
公開しなくても良いかなと思ったが公開
Atom
December 04, 2020
Tweet
Share
More Decks by Atom
See All by Atom
文献紹介 / Structure-based Knowledge Tracing: An Influence Propagation View
roraidolaurent
0
96
文献紹介 / Non-Intrusive Parametric Reduced Order Models withHigh-Dimensional Inputs via Gradient-Free Active Subspace
roraidolaurent
0
59
ニューラルネットワークのベイズ推論 / Bayesian inference of neural networks
roraidolaurent
2
2.8k
Graph Convolutional Networks
roraidolaurent
0
240
文献紹介 / A Probabilistic Annotation Model for Crowdsourcing Coreference
roraidolaurent
0
73
文献紹介Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
roraidolaurent
0
110
文献紹介/ Bayesian Learning for Neural Dependency Parsing
roraidolaurent
0
120
ポッキー数列の加法定理 / Pocky number additon theorem
roraidolaurent
0
220
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
roraidolaurent
1
150
Featured
See All Featured
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Agile that works and the tools we love
rasmusluckow
331
21k
Building Flexible Design Systems
yeseniaperezcruz
330
39k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
YesSQL, Process and Tooling at Scale
rocio
174
15k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
The Cost Of JavaScript in 2023
addyosmani
55
9.3k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.8k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.3k
KATA
mclloyd
PRO
32
15k
Code Reviewing Like a Champion
maltzj
527
40k
Transcript
None
None
∈ , ∈ {0,1}2 ∈ {0,1} ∈ {0,1} + 1
≡ +1 = , , , = 1 , ⋯ , ⊆ × , ∈ ℝ× ∈ ∈ ℝ
None
∈ ℝ2× ∈ ℝ× () ∈ ℝ ∈
, ℎ
None
None
None
None
None
None
☓
None
None
∈ {0,1}
None
None
None
−1 から問題 (スキル をもつ)に正答確率を アテンションで求めるが, と同じスキルをもつ問題(例 )
の正誤情報 は −1 では失われている可能性が大きい. に関連する問題を選択し, その情報 についても アテンションをとる.
None
None
None
None
None
None
None