Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介 / Knowledge Tracing with GNN
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Atom
December 04, 2020
0
100
文献紹介 / Knowledge Tracing with GNN
文献紹介と書いてあるが自分の用のメモ
公開しなくても良いかなと思ったが公開
Atom
December 04, 2020
Tweet
Share
More Decks by Atom
See All by Atom
文献紹介 / Structure-based Knowledge Tracing: An Influence Propagation View
roraidolaurent
0
99
文献紹介 / Non-Intrusive Parametric Reduced Order Models withHigh-Dimensional Inputs via Gradient-Free Active Subspace
roraidolaurent
0
60
ニューラルネットワークのベイズ推論 / Bayesian inference of neural networks
roraidolaurent
2
2.8k
Graph Convolutional Networks
roraidolaurent
0
240
文献紹介 / A Probabilistic Annotation Model for Crowdsourcing Coreference
roraidolaurent
0
76
文献紹介Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
roraidolaurent
0
120
文献紹介/ Bayesian Learning for Neural Dependency Parsing
roraidolaurent
0
120
ポッキー数列の加法定理 / Pocky number additon theorem
roraidolaurent
0
230
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
roraidolaurent
1
160
Featured
See All Featured
Embracing the Ebb and Flow
colly
88
5k
The #1 spot is gone: here's how to win anyway
tamaranovitovic
2
920
Building the Perfect Custom Keyboard
takai
2
680
Site-Speed That Sticks
csswizardry
13
1.1k
The SEO Collaboration Effect
kristinabergwall1
0
350
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
290
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
Practical Orchestrator
shlominoach
191
11k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
Statistics for Hackers
jakevdp
799
230k
エンジニアに許された特別な時間の終わり
watany
106
230k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
450
Transcript
None
None
∈ , ∈ {0,1}2 ∈ {0,1} ∈ {0,1} + 1
≡ +1 = , , , = 1 , ⋯ , ⊆ × , ∈ ℝ× ∈ ∈ ℝ
None
∈ ℝ2× ∈ ℝ× () ∈ ℝ ∈
, ℎ
None
None
None
None
None
None
☓
None
None
∈ {0,1}
None
None
None
−1 から問題 (スキル をもつ)に正答確率を アテンションで求めるが, と同じスキルをもつ問題(例 )
の正誤情報 は −1 では失われている可能性が大きい. に関連する問題を選択し, その情報 についても アテンションをとる.
None
None
None
None
None
None
None