Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介 / Knowledge Tracing with GNN
Search
Atom
December 04, 2020
0
92
文献紹介 / Knowledge Tracing with GNN
文献紹介と書いてあるが自分の用のメモ
公開しなくても良いかなと思ったが公開
Atom
December 04, 2020
Tweet
Share
More Decks by Atom
See All by Atom
文献紹介 / Structure-based Knowledge Tracing: An Influence Propagation View
roraidolaurent
0
88
文献紹介 / Non-Intrusive Parametric Reduced Order Models withHigh-Dimensional Inputs via Gradient-Free Active Subspace
roraidolaurent
0
55
ニューラルネットワークのベイズ推論 / Bayesian inference of neural networks
roraidolaurent
1
2.8k
Graph Convolutional Networks
roraidolaurent
0
230
文献紹介 / A Probabilistic Annotation Model for Crowdsourcing Coreference
roraidolaurent
0
65
文献紹介Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
roraidolaurent
0
96
文献紹介/ Bayesian Learning for Neural Dependency Parsing
roraidolaurent
0
110
ポッキー数列の加法定理 / Pocky number additon theorem
roraidolaurent
0
210
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
roraidolaurent
1
140
Featured
See All Featured
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
900
Mobile First: as difficult as doing things right
swwweet
223
9.6k
Rebuilding a faster, lazier Slack
samanthasiow
81
9k
Adopting Sorbet at Scale
ufuk
77
9.4k
GitHub's CSS Performance
jonrohan
1031
460k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
A Tale of Four Properties
chriscoyier
159
23k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
GraphQLとの向き合い方2022年版
quramy
46
14k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
VelocityConf: Rendering Performance Case Studies
addyosmani
329
24k
Transcript
None
None
∈ , ∈ {0,1}2 ∈ {0,1} ∈ {0,1} + 1
≡ +1 = , , , = 1 , ⋯ , ⊆ × , ∈ ℝ× ∈ ∈ ℝ
None
∈ ℝ2× ∈ ℝ× () ∈ ℝ ∈
, ℎ
None
None
None
None
None
None
☓
None
None
∈ {0,1}
None
None
None
−1 から問題 (スキル をもつ)に正答確率を アテンションで求めるが, と同じスキルをもつ問題(例 )
の正誤情報 は −1 では失われている可能性が大きい. に関連する問題を選択し, その情報 についても アテンションをとる.
None
None
None
None
None
None
None