Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介 / Knowledge Tracing with GNN
Search
Atom
December 04, 2020
0
77
文献紹介 / Knowledge Tracing with GNN
文献紹介と書いてあるが自分の用のメモ
公開しなくても良いかなと思ったが公開
Atom
December 04, 2020
Tweet
Share
More Decks by Atom
See All by Atom
文献紹介 / Structure-based Knowledge Tracing: An Influence Propagation View
roraidolaurent
0
76
文献紹介 / Non-Intrusive Parametric Reduced Order Models withHigh-Dimensional Inputs via Gradient-Free Active Subspace
roraidolaurent
0
47
ニューラルネットワークのベイズ推論 / Bayesian inference of neural networks
roraidolaurent
1
2.7k
Graph Convolutional Networks
roraidolaurent
0
210
文献紹介 / A Probabilistic Annotation Model for Crowdsourcing Coreference
roraidolaurent
0
59
文献紹介Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
roraidolaurent
0
90
文献紹介/ Bayesian Learning for Neural Dependency Parsing
roraidolaurent
0
98
ポッキー数列の加法定理 / Pocky number additon theorem
roraidolaurent
0
190
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
roraidolaurent
1
120
Featured
See All Featured
Writing Fast Ruby
sferik
628
61k
Why Our Code Smells
bkeepers
PRO
336
57k
VelocityConf: Rendering Performance Case Studies
addyosmani
328
24k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
How to train your dragon (web standard)
notwaldorf
91
5.8k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.6k
Typedesign – Prime Four
hannesfritz
40
2.5k
KATA
mclloyd
29
14k
GraphQLとの向き合い方2022年版
quramy
44
13k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.4k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Transcript
None
None
∈ , ∈ {0,1}2 ∈ {0,1} ∈ {0,1} + 1
≡ +1 = , , , = 1 , ⋯ , ⊆ × , ∈ ℝ× ∈ ∈ ℝ
None
∈ ℝ2× ∈ ℝ× () ∈ ℝ ∈
, ℎ
None
None
None
None
None
None
☓
None
None
∈ {0,1}
None
None
None
−1 から問題 (スキル をもつ)に正答確率を アテンションで求めるが, と同じスキルをもつ問題(例 )
の正誤情報 は −1 では失われている可能性が大きい. に関連する問題を選択し, その情報 についても アテンションをとる.
None
None
None
None
None
None
None