Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data at the Speed of your Users
Search
Rustam Aliyev
September 26, 2014
Technology
1
77
Data at the Speed of your Users
Apache Cassandra and Spark for simple, distributed, near real-time stream processing.
Rustam Aliyev
September 26, 2014
Tweet
Share
More Decks by Rustam Aliyev
See All by Rustam Aliyev
From monolith web app to micro-frontends
rstml
0
960
Lightning Fast Analytics with Spark and Cassandra
rstml
2
320
Deep dive into CQL
rstml
1
64
Other Decks in Technology
See All in Technology
Bedrock AgentCore Evaluationsで学ぶLLM as a judge入門
shichijoyuhi
2
250
Strands AgentsとNova 2 SonicでS2Sを実践してみた
yama3133
1
1.9k
日本の AI 開発と世界の潮流 / GenAI Development in Japan
hariby
1
450
ペアーズにおけるAIエージェント 基盤とText to SQLツールの紹介
hisamouna
2
1.7k
AIエージェント開発と活用を加速するワークフロー自動生成への挑戦
shibuiwilliam
5
850
AR Guitar: Expanding Guitar Performance from a Live House to Urban Space
ekito_station
0
210
AIBuildersDay_track_A_iidaxs
iidaxs
4
1.3k
なぜ あなたはそんなに re:Invent に行くのか?
miu_crescent
PRO
0
210
投資戦略を量産せよ 2 - マケデコセミナー(2025/12/26)
gamella
0
390
事業の財務責任に向き合うリクルートデータプラットフォームのFinOps
recruitengineers
PRO
2
210
2025-12-27 Claude CodeでPRレビュー対応を効率化する@機械学習社会実装勉強会第54回
nakamasato
4
1k
AI with TiDD
shiraji
1
280
Featured
See All Featured
The SEO Collaboration Effect
kristinabergwall1
0
310
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
0
300
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
100
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
190
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
37
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Leo the Paperboy
mayatellez
0
1.3k
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
73
Transcript
Data at the Speed of your Users Apache Cassandra and
Spark for simple, distributed, near real-time stream processing. GOTO Copenhagen 2014
Rustam Aliyev Solution Architect at . ! ! @rstml
Big Data? Photo: Flickr / Watches En Masse
" Volume # Variety $ Velocity
Velocity = Near Real Time
Near Real Time?
0.5 sec ≤ ≤ 60 sec Near Real Time
Use Cases Photo: Flickr / Swiss Army / Jim Pennucci
Web Analytics Dynamic Pricing Recommendation Fraud Detection
Architecture Photo: Ilkin Kangarli / Baku Haydar Aliyev Center
Architecture Goals Low Latency High Availability Horizontal Scalability Simplicity
Stream Processing % % % % % % % %
% % % % % % % % % % % % % % % % % % % % % % % Collection Processing Storing Delivery
Stream Processing % % % % % % % %
% % % % % % % % % % % % % % % % % % % % % % % Collection ! ! Spark ! Cassandra Delivery
Cassandra Distributed Database Photo: Flickr / Hypostyle Hall / Jorge
Láscar
Data Model
Partition Cell 1 Cell 2 … Cell 3 Partition Key
Partition os: Android storage: 32GB version: 4.4 weight: 130g sort
order on disk Nexus 5
Table os: Android storage: 32GB version: 4.4 weight: 130g Nexus
5 os: iOS storage: 64GB version: 8.0 weight: 129g iPhone 6
Distribution
0000 8000 4000 C000 2000 6000 E000 A000 3D97 Nexus
5
0000 8000 4000 C000 2000 6000 E000 A000 9C4F iPhone
6 3D97
Replication
0000 8000 4000 C000 2000 6000 E000 A000 3D97 9C4F
1 replica
0000 8000 4000 C000 2000 6000 E000 A000 3D97 9C4F
9C4F 3D97 2 replicas
Spark Distributed Data Processing Engine Photo: Flickr / Sparklers /
Alexandra Compo / CreativeCommons
Fast In-memory
Logistic Regression Running Time (s) 1000 2000 3000 4000 Number
of Iterations 1 5 10 20 30 Spark Hadoop
Easy
map ! reduce
map filter groupBy sort union join leftOuterJoin rightOuterJoin reduce count
fold reduceByKey groupByKey cogroup cross zip sample take first partitionBy mapWith pipe save ...
RDD Resilient Distributed Datasets Node 1 Node 2 Node 3
Node 1 Node 2 Node 3
Operator DAG groupBy join filter map Disk RDD Memory RDD
Spark Streaming Micro-batching
RDD DStream Data Stream
Spark + Cassandra DataStax Spark Cassandra Connector
https://github.com/datastax/spark-cassandra-connector
M M
M Cassandra Spark Worker Spark Master & Worker
Demo ! ! Twitter Analytics
Cassandra Data Model
ALL: 7139 2014-09-21: 220 2014-09-20: 309 2014-09-19: 129 sort order
#hashtag
CREATE TABLE hashtags ( hashtag text,
interval text, mentions counter, PRIMARY KEY((hashtag), interval) ) WITH CLUSTERING ORDER BY (interval DESC);
Processing Data Stream
import com.datastax.spark.connector.streaming._ ! val sc = new SparkConf()
.setMaster("spark://127.0.0.1:7077") .setAppName("Twitter-‐Demo") .setJars("demo-‐assembly-‐1.0.jar")) .set("spark.cassandra.connection.host", "127.0.0.1") ! val ssc = new StreamingContext(sc, Seconds(2)) ! val stream = TwitterUtils. createStream(ssc, None, Nil, storageLevel = StorageLevel.MEMORY_ONLY_SER_2) ! val hashTags = stream.flatMap(tweet => tweet.getText.toLowerCase.split(" "). filter(tags.contains(Seq("#iphone", "#android")))) ! val tagCounts = hashTags.map((_, 1)).reduceByKey(_ + _) ! val tagCountsAll = tagCounts.map{ case (tag, mentions) => (tag, mentions, "ALL") } !
import com.datastax.spark.connector.streaming._ ! val sc = new SparkConf()
.setMaster("spark://127.0.0.1:7077") .setAppName("Twitter-‐Demo") .setJars("demo-‐assembly-‐1.0.jar")) .set("spark.cassandra.connection.host", "127.0.0.1") ! val ssc = new StreamingContext(sc, Seconds(2)) ! val stream = TwitterUtils. createStream(ssc, None, Nil, storageLevel = StorageLevel.MEMORY_ONLY_SER_2) ! val hashTags = stream.flatMap(tweet => tweet.getText.toLowerCase.split(" "). filter(tags.contains(Seq("#iphone", "#android")))) ! val tagCounts = hashTags.map((_, 1)).reduceByKey(_ + _) ! val tagCountsAll = tagCounts.map{ case (tag, mentions) => (tag, mentions, "ALL") } !
import com.datastax.spark.connector.streaming._ ! val sc = new SparkConf()
.setMaster("spark://127.0.0.1:7077") .setAppName("Twitter-‐Demo") .setJars("demo-‐assembly-‐1.0.jar")) .set("spark.cassandra.connection.host", "127.0.0.1") ! val ssc = new StreamingContext(sc, Seconds(2)) ! val stream = TwitterUtils. createStream(ssc, None, Nil, storageLevel = StorageLevel.MEMORY_ONLY_SER_2) ! val hashTags = stream.flatMap(tweet => tweet.getText.toLowerCase.split(" "). filter(tags.contains(Seq("#iphone", "#android")))) ! val tagCounts = hashTags.map((_, 1)).reduceByKey(_ + _) ! val tagCountsAll = tagCounts.map{ case (tag, mentions) => (tag, mentions, "ALL") } !
! val ssc = new StreamingContext(sc, Seconds(2)) ! val
stream = TwitterUtils. createStream(ssc, None, Nil, storageLevel = StorageLevel.MEMORY_ONLY_SER_2) ! val hashTags = stream.flatMap(tweet => tweet.getText.toLowerCase.split(" "). filter(tags.contains(Seq("#iphone", "#android")))) ! val tagCounts = hashTags.map((_, 1)).reduceByKey(_ + _) ! val tagCountsAll = tagCounts.map{ case (tag, mentions) => (tag, mentions, "ALL") } ! tagCountsAll.saveToCassandra( "demo_ks", "hashtags", Seq("hashtag", "mentions", "interval")) ! ssc.start() ssc.awaitTermination()
! val ssc = new StreamingContext(sc, Seconds(2)) ! val
stream = TwitterUtils. createStream(ssc, None, Nil, storageLevel = StorageLevel.MEMORY_ONLY_SER_2) ! val hashTags = stream.flatMap(tweet => tweet.getText.toLowerCase.split(" "). filter(tags.contains(Seq("#iphone", "#android")))) ! val tagCounts = hashTags.map((_, 1)).reduceByKey(_ + _) ! val tagCountsByDay = tagCounts.map{ case (tag, mentions) => (tag, mentions, DateTime.now.toString("yyyyMMdd")) } ! tagCountsByDay.saveToCassandra( "demo_ks", "hashtags", Seq("hashtag", "mentions", "interval")) ! ssc.start() ssc.awaitTermination()
! val ssc = new StreamingContext(sc, Seconds(2)) ! val
stream = TwitterUtils. createStream(ssc, None, Nil, storageLevel = StorageLevel.MEMORY_ONLY_SER_2) ! val hashTags = stream.flatMap(tweet => tweet.getText.toLowerCase.split(" "). filter(tags.contains(Seq("#iphone", "#android")))) ! val tagCounts = hashTags.map((_, 1)).reduceByKey(_ + _) ! val tagCountsAll = tagCounts.map{ case (tag, mentions) => (tag, mentions, "ALL") } ! tagCountsAll.saveToCassandra( "demo_ks", "hashtags", Seq("hashtag", "mentions", "interval")) ! ssc.start() ssc.awaitTermination()
Questions ?