Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data at the Speed of your Users
Search
Rustam Aliyev
September 26, 2014
Technology
1
75
Data at the Speed of your Users
Apache Cassandra and Spark for simple, distributed, near real-time stream processing.
Rustam Aliyev
September 26, 2014
Tweet
Share
More Decks by Rustam Aliyev
See All by Rustam Aliyev
From monolith web app to micro-frontends
rstml
0
950
Lightning Fast Analytics with Spark and Cassandra
rstml
2
310
Deep dive into CQL
rstml
1
62
Other Decks in Technology
See All in Technology
Access-what? why and how, A11Y for All - Nordic.js 2025
gdomiciano
1
130
Goに育てられ開発者向けセキュリティ事業を立ち上げた僕が今向き合う、AI × セキュリティの最前線 / Go Conference 2025
flatt_security
0
370
from Sakichi Toyoda to Agile
kawaguti
PRO
1
110
LLMアプリの地上戦開発計画と運用実践 / 2025.10.15 GPU UNITE 2025
smiyawaki0820
1
160
「AI駆動PO」を考えてみる - 作る速さから価値のスループットへ:検査・適応で未来を開発 / AI-driven product owner. scrummat2025
yosuke_nagai
3
810
Developer Advocate / Community Managerなるには?
tsho
0
120
三菱電機・ソニーグループ共同の「Agile Japan企業内サテライト」_2025
sony
0
130
Exadata Database Service on Dedicated Infrastructure(ExaDB-D) UI スクリーン・キャプチャ集
oracle4engineer
PRO
3
5.5k
「使い方教えて」「事例教えて」じゃもう遅い! Microsoft 365 Copilot を触り倒そう!
taichinakamura
0
300
Where will it converge?
ibknadedeji
0
200
Large Vision Language Modelを用いた 文書画像データ化作業自動化の検証、運用 / shibuya_AI
sansan_randd
0
130
なぜAWSを活かしきれないのか?技術と組織への処方箋
nrinetcom
PRO
1
360
Featured
See All Featured
Facilitating Awesome Meetings
lara
56
6.6k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.5k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Docker and Python
trallard
46
3.6k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Agile that works and the tools we love
rasmusluckow
331
21k
Code Reviewing Like a Champion
maltzj
525
40k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Building Applications with DynamoDB
mza
96
6.7k
Transcript
Data at the Speed of your Users Apache Cassandra and
Spark for simple, distributed, near real-time stream processing. GOTO Copenhagen 2014
Rustam Aliyev Solution Architect at . ! ! @rstml
Big Data? Photo: Flickr / Watches En Masse
" Volume # Variety $ Velocity
Velocity = Near Real Time
Near Real Time?
0.5 sec ≤ ≤ 60 sec Near Real Time
Use Cases Photo: Flickr / Swiss Army / Jim Pennucci
Web Analytics Dynamic Pricing Recommendation Fraud Detection
Architecture Photo: Ilkin Kangarli / Baku Haydar Aliyev Center
Architecture Goals Low Latency High Availability Horizontal Scalability Simplicity
Stream Processing % % % % % % % %
% % % % % % % % % % % % % % % % % % % % % % % Collection Processing Storing Delivery
Stream Processing % % % % % % % %
% % % % % % % % % % % % % % % % % % % % % % % Collection ! ! Spark ! Cassandra Delivery
Cassandra Distributed Database Photo: Flickr / Hypostyle Hall / Jorge
Láscar
Data Model
Partition Cell 1 Cell 2 … Cell 3 Partition Key
Partition os: Android storage: 32GB version: 4.4 weight: 130g sort
order on disk Nexus 5
Table os: Android storage: 32GB version: 4.4 weight: 130g Nexus
5 os: iOS storage: 64GB version: 8.0 weight: 129g iPhone 6
Distribution
0000 8000 4000 C000 2000 6000 E000 A000 3D97 Nexus
5
0000 8000 4000 C000 2000 6000 E000 A000 9C4F iPhone
6 3D97
Replication
0000 8000 4000 C000 2000 6000 E000 A000 3D97 9C4F
1 replica
0000 8000 4000 C000 2000 6000 E000 A000 3D97 9C4F
9C4F 3D97 2 replicas
Spark Distributed Data Processing Engine Photo: Flickr / Sparklers /
Alexandra Compo / CreativeCommons
Fast In-memory
Logistic Regression Running Time (s) 1000 2000 3000 4000 Number
of Iterations 1 5 10 20 30 Spark Hadoop
Easy
map ! reduce
map filter groupBy sort union join leftOuterJoin rightOuterJoin reduce count
fold reduceByKey groupByKey cogroup cross zip sample take first partitionBy mapWith pipe save ...
RDD Resilient Distributed Datasets Node 1 Node 2 Node 3
Node 1 Node 2 Node 3
Operator DAG groupBy join filter map Disk RDD Memory RDD
Spark Streaming Micro-batching
RDD DStream Data Stream
Spark + Cassandra DataStax Spark Cassandra Connector
https://github.com/datastax/spark-cassandra-connector
M M
M Cassandra Spark Worker Spark Master & Worker
Demo ! ! Twitter Analytics
Cassandra Data Model
ALL: 7139 2014-09-21: 220 2014-09-20: 309 2014-09-19: 129 sort order
#hashtag
CREATE TABLE hashtags ( hashtag text,
interval text, mentions counter, PRIMARY KEY((hashtag), interval) ) WITH CLUSTERING ORDER BY (interval DESC);
Processing Data Stream
import com.datastax.spark.connector.streaming._ ! val sc = new SparkConf()
.setMaster("spark://127.0.0.1:7077") .setAppName("Twitter-‐Demo") .setJars("demo-‐assembly-‐1.0.jar")) .set("spark.cassandra.connection.host", "127.0.0.1") ! val ssc = new StreamingContext(sc, Seconds(2)) ! val stream = TwitterUtils. createStream(ssc, None, Nil, storageLevel = StorageLevel.MEMORY_ONLY_SER_2) ! val hashTags = stream.flatMap(tweet => tweet.getText.toLowerCase.split(" "). filter(tags.contains(Seq("#iphone", "#android")))) ! val tagCounts = hashTags.map((_, 1)).reduceByKey(_ + _) ! val tagCountsAll = tagCounts.map{ case (tag, mentions) => (tag, mentions, "ALL") } !
import com.datastax.spark.connector.streaming._ ! val sc = new SparkConf()
.setMaster("spark://127.0.0.1:7077") .setAppName("Twitter-‐Demo") .setJars("demo-‐assembly-‐1.0.jar")) .set("spark.cassandra.connection.host", "127.0.0.1") ! val ssc = new StreamingContext(sc, Seconds(2)) ! val stream = TwitterUtils. createStream(ssc, None, Nil, storageLevel = StorageLevel.MEMORY_ONLY_SER_2) ! val hashTags = stream.flatMap(tweet => tweet.getText.toLowerCase.split(" "). filter(tags.contains(Seq("#iphone", "#android")))) ! val tagCounts = hashTags.map((_, 1)).reduceByKey(_ + _) ! val tagCountsAll = tagCounts.map{ case (tag, mentions) => (tag, mentions, "ALL") } !
import com.datastax.spark.connector.streaming._ ! val sc = new SparkConf()
.setMaster("spark://127.0.0.1:7077") .setAppName("Twitter-‐Demo") .setJars("demo-‐assembly-‐1.0.jar")) .set("spark.cassandra.connection.host", "127.0.0.1") ! val ssc = new StreamingContext(sc, Seconds(2)) ! val stream = TwitterUtils. createStream(ssc, None, Nil, storageLevel = StorageLevel.MEMORY_ONLY_SER_2) ! val hashTags = stream.flatMap(tweet => tweet.getText.toLowerCase.split(" "). filter(tags.contains(Seq("#iphone", "#android")))) ! val tagCounts = hashTags.map((_, 1)).reduceByKey(_ + _) ! val tagCountsAll = tagCounts.map{ case (tag, mentions) => (tag, mentions, "ALL") } !
! val ssc = new StreamingContext(sc, Seconds(2)) ! val
stream = TwitterUtils. createStream(ssc, None, Nil, storageLevel = StorageLevel.MEMORY_ONLY_SER_2) ! val hashTags = stream.flatMap(tweet => tweet.getText.toLowerCase.split(" "). filter(tags.contains(Seq("#iphone", "#android")))) ! val tagCounts = hashTags.map((_, 1)).reduceByKey(_ + _) ! val tagCountsAll = tagCounts.map{ case (tag, mentions) => (tag, mentions, "ALL") } ! tagCountsAll.saveToCassandra( "demo_ks", "hashtags", Seq("hashtag", "mentions", "interval")) ! ssc.start() ssc.awaitTermination()
! val ssc = new StreamingContext(sc, Seconds(2)) ! val
stream = TwitterUtils. createStream(ssc, None, Nil, storageLevel = StorageLevel.MEMORY_ONLY_SER_2) ! val hashTags = stream.flatMap(tweet => tweet.getText.toLowerCase.split(" "). filter(tags.contains(Seq("#iphone", "#android")))) ! val tagCounts = hashTags.map((_, 1)).reduceByKey(_ + _) ! val tagCountsByDay = tagCounts.map{ case (tag, mentions) => (tag, mentions, DateTime.now.toString("yyyyMMdd")) } ! tagCountsByDay.saveToCassandra( "demo_ks", "hashtags", Seq("hashtag", "mentions", "interval")) ! ssc.start() ssc.awaitTermination()
! val ssc = new StreamingContext(sc, Seconds(2)) ! val
stream = TwitterUtils. createStream(ssc, None, Nil, storageLevel = StorageLevel.MEMORY_ONLY_SER_2) ! val hashTags = stream.flatMap(tweet => tweet.getText.toLowerCase.split(" "). filter(tags.contains(Seq("#iphone", "#android")))) ! val tagCounts = hashTags.map((_, 1)).reduceByKey(_ + _) ! val tagCountsAll = tagCounts.map{ case (tag, mentions) => (tag, mentions, "ALL") } ! tagCountsAll.saveToCassandra( "demo_ks", "hashtags", Seq("hashtag", "mentions", "interval")) ! ssc.start() ssc.awaitTermination()
Questions ?