Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[kantocv] The Perception-Distortion Tradeoff
Search
So Uchida
August 25, 2019
Research
2
1k
[kantocv] The Perception-Distortion Tradeoff
So Uchida
August 25, 2019
Tweet
Share
More Decks by So Uchida
See All by So Uchida
[CVPR2025論文読み会] Linguistics-aware Masked Image Modelingfor Self-supervised Scene Text Recognition
s_aiueo32
0
270
Adaptive Text Recognition through Visual Matching
s_aiueo32
1
1k
[cvpaper.challenge] Second-order Attention Network for Single Image Super-Resolution
s_aiueo32
0
230
Other Decks in Research
See All in Research
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
390
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
280
A History of Approximate Nearest Neighbor Search from an Applications Perspective
matsui_528
1
120
音声感情認識技術の進展と展望
nagase
0
410
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
580
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
410
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
230
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
250
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
1.1k
生成的情報検索時代におけるAI利用と認知バイアス
trycycle
PRO
0
110
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
1.3k
Nullspace MPC
mizuhoaoki
1
530
Featured
See All Featured
Raft: Consensus for Rubyists
vanstee
141
7.3k
Deep Space Network (abreviated)
tonyrice
0
21
The SEO Collaboration Effect
kristinabergwall1
0
310
Why Our Code Smells
bkeepers
PRO
340
57k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
120
Joys of Absence: A Defence of Solitary Play
codingconduct
1
260
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
70k
Design in an AI World
tapps
0
100
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.4k
Site-Speed That Sticks
csswizardry
13
1k
Transcript
第54回 コンピュータビジョン勉強会@関東 The Perception-Distortion Tradeoff Presenter: @s_aiueo32
論⽂情報 ü タイトル: The Perception-Distortion Tradeoff ü 著者: Yochai Blau
and Tomer Michaeli (Technion) ü 採択状況: CVPR2018 Orals/Spotlights ü 内容 ü メトリックと知覚品質のトレードオフに関して考察 ü (トレードオフを横断するのに) GANはいいぞ
Image Restoration ü 画像の劣化(Degradation)を修復し,元の画像を再構成する問題 Super Resolution Inpain0ng Dehazing Denoising debruring
Image Restorationのゴール Low Distortion ü GTに近い画像を⽣成できればいい ü 画像間の距離で測る ü MAE,
MSE, PSNR, SSIM etc. Good Perceptual Quality ü 「⾃然」な画像を⽣成できればいい ü 単⼀画像を⽤いて計測 ü BRISQUE, NIQE etc. (本論文の主張) 2つのゴールを同時に達成することは不可能 Mr. Intuition 「距離がゼロならそれは自然な画像では?」 無理
経験的には結構⾔われてた 滑らかすぎる PSNRが 低 い !
他のアルゴリズムでの結果 両立しているモデルは存在しない Better Better 敵 「RMSEがダメなだけでは?」
他の指標での結果
ここからちょっと算数
Image Restoration ∼ # 自然画像 再構成画像 % 劣化画像 '|# )
#|' Algorithm
Distortion [Δ(, ) )] SSD, SSIM, MS-SSIM, IFC, VIF, VGG,
… ∼ # 自然画像 再構成画像 % 非負性: Δ , ≥ 0 同一律: Δ , = 0
Perceptual Quality ∼ # 自然画像 再構成画像 % Real or Fake
7899:77 ∝ =>(#, ) # ) 50% 50% ∼ ) #
Perceptual Quality (#, ) # ) TV, KL, Hellinger, @,
Renyi, Wasserstein, … ∼ # 自然画像 再構成画像 % 非負性: , ≥ 0 同一律: , = 0 ⟺ = ∼ ) #
本論⽂の問題設定 問題 → → ) 尺度の定式化 Distortion: [Δ(, ) )]
Perceptual Quality: (# , ) # ) [Δ(, ) )] (#, ) # ) このトレードオフの 存在を証明
Low Distortionは?
簡単なパラメータ推定の例 ü ノイズ を含んだ観測値 からパラメータ を推定 = + ü は次の確率質量関数に従う確率変数
#() = G H = ±1 K = 0 ü は正規分布に従う ~(0, 1) この設定でMMSEとMAP推定を行う
MMSE と MAP推定 ü MMSE ü 推定値は条件付期待値で与えられる % NNOP =
= ü ) #QQRS は確率密度 ü MAP推定 ü 事後確率最⼤のパラメータを出⼒ % NTU = argmax[∈{^H,K,H} ( = |) ü 今回の設定だとsign(⋅)と同じ
MNISTでMMSE/MAP推定した結果 ü MNISTとBlank画像を混ぜたデータでDenoising 高ノイズレベルで ぼやける 高ノイズレベルでは Blankがほとんど
トレードオフについて
Tradeoff Function ü Distortionレベルごとの下界を求める関数を定義 = min fg h|i #, )
# . . Δ , ) ≤ ü (, )がに関して凸なら, ()は単調減少&凸関数 (= Tradeoff!!) ü -divergenceはに関して凸 = + の例でのプロット
トレードオフを横断 ü ⺠「トレードオフがあるのは分かったけど, 下界に近づきたい」 ü 神「GANを使いましょう」 = min fg h|i
#, ) # . . Δ , ) ≤ ℓp:q = ℓrs7tuvtsuq + ℓxry ≈ Δ , ) + (#, ) # ) ⟷
実験 ü WGANで ∈ [0, 0.3]を変えながらDenoising ü 理論的な下界に沿って品質をコントロールできることを確認
既存のアルゴリズムの評価 ü ⾔葉の定義 ü A dominates B: AがBにDistortionでもPerceptual Qualityでも勝ってる ü
A is admissible: Aはどのアルゴリズムにもdominateされてない ü admissibleな⼿法が下界に近い⼿法
レート歪との関係 ü 許容歪に対してどれくらい圧縮できるか? ü Perception-Distortion Tradeoffと似た形 = min fg h|h
; ) s. t. Δ , ) ≤ ü レート歪とのPerception-Distortion Tradeoffの違い 1. レート歪は) #|# を考えるけど,こっちは) #|' を考える 2. ; ) はと ) の同時分布に依存するけど, #, ) # は依存しない ü 著者はICML2019にこんな論⽂通している ü “Rethinking Lossy Compression: The Rate-Distortion-Perception Tradeoff”
まとめ ü DistortioinとPerceptual Qualityの間にトレードオフがある ü GAN損失の⽐率によってトレードオフ関数を横断できる ü 許容Distortionレベルを決めてから動かすのが良い ü 「最適なアルゴリズム」は応⽤依存
ü 医⽤画像はDistortion志向, 写真はPerceptual Quality志向