Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ストリートスナップデータに 統計的ネットワーク分析の適用を試みた
Search
saltcooky
May 25, 2019
Science
0
870
ストリートスナップデータに 統計的ネットワーク分析の適用を試みた
TokyoR #78 LT
saltcooky
May 25, 2019
Tweet
Share
More Decks by saltcooky
See All by saltcooky
SpatialRDDパッケージによる空間回帰不連続デザイン
saltcooky12
0
82
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
240
FIBA W杯の日本代表って組み合わせ次第で2次ラウンド行けたんじゃね?をデータで検証
saltcooky12
0
340
Rで有名絵画を安全に買いたい
saltcooky12
0
370
階層クラスタリングにおける仮説検定
saltcooky12
0
1.1k
データドリブンな仮説検証のためのSelective Inference
saltcooky12
1
1.4k
Other Decks in Science
See All in Science
Accelerating operator Sinkhorn iteration with overrelaxation
tasusu
0
130
先端因果推論特別研究チームの研究構想と 人間とAIが協働する自律因果探索の展望
sshimizu2006
3
590
My Little Monster
juzishuu
0
330
Performance Evaluation and Ranking of Drivers in Multiple Motorsports Using Massey’s Method
konakalab
0
130
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
900
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.9k
MCMCのR-hatは分散分析である
moricup
0
530
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
0
120
PPIのみを用いたAIによる薬剤–遺伝子–疾患 相互作用の同定
tagtag
0
120
DMMにおけるABテスト検証設計の工夫
xc6da
1
1.4k
会社でMLモデルを作るとは @電気通信大学 データアントレプレナーフェロープログラム
yuto16
1
440
白金鉱業Vol.21【初学者向け発表枠】身近な例から学ぶ数理最適化の基礎 / Learning the Basics of Mathematical Optimization Through Everyday Examples
brainpadpr
1
460
Featured
See All Featured
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
87
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
GraphQLとの向き合い方2022年版
quramy
50
14k
Game over? The fight for quality and originality in the time of robots
wayneb77
1
64
Writing Fast Ruby
sferik
630
62k
Navigating Team Friction
lara
191
16k
Scaling GitHub
holman
464
140k
AI Search: Where Are We & What Can We Do About It?
aleyda
0
6.7k
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
290
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
47
33k
How to Ace a Technical Interview
jacobian
281
24k
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.4k
Transcript
ετϦʔτεφοϓσʔλʹ ౷ܭతωοτϫʔΫੳͷద༻ΛࢼΈͨ 5PLZP3 !TBMUDPPLZ
୭ʁ • !TBMUDPPLZ • 3ྺɿ͙Β͍͔ͳ • ۈઌɿݪ॓ʹ͋Δ*5ܥͷձࣾ • ࣄ༰ɿ3%తͳ෦ॺͰ3Λͬͨ ɾσʔλੳ
ׂ ɾػցֶश ׂ ɾલॲཧ ׂ • झຯɿϑΝογϣϯඒज़ؗ८Γ
ωοτϫʔΫੳͱ ਓؒؔɺاۀؒͷؔɺੜؒͷؔɺίϯϐϡʔλωοτϫʔΫ ͳͲͷؔߏΛੳ͢ΔάϥϑཧΛϕʔεͱͨ͠ੳख๏ (ग़య : https://www.slideshare.net/kashitan/tidygraphggraph) (https://www.amazon.co.jp/exec/obidos/ASIN/4320019288) ͜ΕͰษڧ͠·ͨ͠ ࠷ۙͷTokyoRͩͱ @kashitan
͞Μ͕ ൃදͨ͠Γͯͨ͠
ωοτϫʔΫੳ Α͋͘ΔͷωοτϫʔΫͷࢦඪͷࢉग़ߏͷநग़ - த৺ੑ ͲͷΑ͏ͳਓ͕த৺తͳਓ͔ - ίϛϡχςΟநग़ ͲͷΑ͏ͳάϧʔϓʹ͔Ε͍ͯΔ͔ - ૬ؔ
̎ͭͷωοτϫʔΫࣅ͍ͯΔ͔Ͳ͏͔ - ίΞநग़ ωοτϫʔΫͷີʹ݁߹ͨ͠த৺෦
ωοτϫʔΫͷ͋Δ̎ͷؒ J K ͷลɺ֬QJKͰ֬తʹൃੜ͢Δͱߟ͑Δ QJKύϥϝʔλВΛ࣋ͭϩδεςΟοΫϞσϧͰදݱͰ͖Δ J KͱK Lʹล͕ுΔ֬QJKºQKLͱදݱͰ͖Δ ౷ܭతωοτϫʔΫੳ K
L J
ࢦϥϯμϜάϥϑϞσϧ FYQPOFOUJBMSBOEPNHSBQINPEFM ɹϥϯμϜάϥϑ:ʹ͓͍ͯಛఆͷάϥϑߏZ͕ಘΒΕΔ֤֬ล͕ுΔ֬ͷ ྦྷͰදݱͰ͖Δͱߟ͑ͨϞσϧ ౷ܭతωοτϫʔΫੳ yʹ͋Δลͷ ύϥϝʔλ ن֨Խఆ ωοτϫʔΫશମ
ͷลͷൃੜ֬
ࢦϥϯμϜάϥϑϞσϧɹQ Ϟσϧ ɹϥϯμϜάϥϑ:ͷลͷൃੜ༷֬ʑͳཁૉʹΑΓ֬తʹܾ·ΔϞσϧ ౷ܭతωοτϫʔΫੳ ཁૉ ϊʔυͷಛྔɿྸɺॏΈɺ෦ॺʜ ลͷಛྔɿަࡍظؒɺΈʜ ϊʔυؒͷؔͷಛɿྸࠩɺۈଓظؒࠩʜ ߏతͳಛྔɿLελʔߏͷʜ ωοτϫʔΫͷߏཁ
ཁૉͷ
ద༻σʔλ
ద༻σʔλ ྸ ৬ۀ ࡱӨॴ ண༻ϒϥϯυ
Ϟνϕʔγϣϯ ลண༻ϒϥϯυͷ ڞ௨ ϒϥϯυͷબͷੑ࣭Λ දݱͰ͖ͳ͍͔ (͔ͳΓແཧཧ)
σʔλऔಘ • ($1্Ͱ%PDLFSΛ༻͍ͯ3TUVEJP 34FMFOJVNڥΛ࡞ • SWFTUQBDLBHFΛར༻ͯ͠εΫϨΠϐϯά • ϙΞιϯʹै͏ִؒͰϖʔδऔಘ ͳΜͱͳ͘
• ҰਓͷεφοϓσʔλΛऔಘ
σʔλ֬ೝ ண༻ϒϥϯυϥϯΩϯά ண༻ϒϥϯυωοτϫʔΫ
Ϟσϧ࡞(ྫ) ࢦϥϯμϜϞσϧTUBUOFUQBDLBHFͰ࣮͕Ͱ͖·͢ɻ # ωοτϫʔΫΦϒδΣΫτͷ࡞ network <- as.network(x = graph_matrix, directed
= FALSE, loops = FALSE) # ֤Τοδʹઆ໌ม(ྸ)ΛՃ network %v% "Age" <- Age # ֤ΤοδͷྸͷࠩΛܭࢉ diff.age <- abs(sweep(matrix(snap_info$Age, nrow = 638, ncol = 638), 2, snap_info$Age)) # Ϟσϧ࡞ model <- ergm( network ~ edges + edgecov(diff.age) + nodecov(“Age”) )
Ϟσϧ࡞ ࢦϥϯμϜϞσϧTUBUOFUQBDLBHFͰ࣮͕Ͱ͖·͢ɻ # ετϦʔτεφοϓͷp*Ϟσϧੜ snap_net_model <- ergm(snap_net ~ edges
+ # ลͷ nodecov(“Age")+ # ྸࠩ edgecov(diff.age) + # ྸ nodematch(“Occupation”) + # ৬ۀ nodematch("Point") ) # ࡱӨॴ
݁ՌΛݟͯΈΔ > summary(snap_net_model) < ུ > Monte Carlo MLE Results:
Estimate Std. Error MCMC % z value Pr(>|z|) edges -5.2066393 0.2692526 0 -19.337 <1e-04 *** edgecov.diff.age -0.0015763 0.0094767 0 -0.166 0.8679 nodecov.Age -0.0003136 0.0061215 0 -0.051 0.9591 nodematch.Occupation -0.0453192 0.0842853 0 -0.538 0.5908 nodematch.Point 0.1491330 0.0628610 0 2.372 0.0177 * < ུ > AIC: 13485 BIC: 13536 (Smaller is better.) ࡱӨॴ͕ลͷൃੜʹ Өڹ͍ͯͦ͠͏ AIC/BICͰมબՄೳ
݁ՌΛݟͯΈΔ ϞσϧΛ༻͍ͯγϛϡϨʔγϣϯ ࣮ઢɿγϛϡϨʔγϣϯʹΑΔ ശͻ͛ਤɿ࣮σʔλͷ ͯ·Γྑ͘ͳ͍ʜ
·ͱΊ • ࠓճͷεφοϓใͰɺண༻ϒϥϯυͷؔੑΛࢦϥϯμϜ άϥϑϞσϧͰ͏·͘දݱͰ͖·ͤΜͰͨ͠ • ౷ܭతωοτϫʔΫੳ݁ߏ໘ന͍ͷͰɺษڧͯ͠ΈͯͶ • ࢲ౷ܭతωοτϫʔΫੳͷษڧଓ͚͍͖͍ͯͨͱࢥ͍·͢ • ͳͷͰɺৄ͍͠ํ͝ڭतئ͍͠·͢
• ڞཱग़൛ʮωοτϫʔΫੳୈ̎൛ʯླஶ IUUQTXXXBNB[PODPKQFYFDPCJEPT"4*/ • \UJEZHSBQI^ͱ\HHSBQI^ʹΑΔϞμϯͳωοτϫʔΫੳ IUUQTXXXTMJEFTIBSFOFULBTIJUBOUJEZHSBQIHHSBQI • 3ʹΑΔωοτϫʔΫੳΛ·ͱΊ·ͨ͠ωοτϫʔΫͷࢦඪฤ IUUQTRJJUBDPNTBMUDPPLZJUFNTFEDFEGCDE •
3ʹΑΔωοτϫʔΫੳΛ·ͱΊ·ͨ͠౷ܭతωοτϫʔΫੳฤ IUUQTRJJUBDPNTBMUDPPLZJUFNTCBFGDFCGBDFBDCGD ࢀߟ