Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Rで有名絵画を安全に買いたい
Search
saltcooky
September 16, 2022
Science
0
370
Rで有名絵画を安全に買いたい
TokyoR #101 LT
saltcooky
September 16, 2022
Tweet
Share
More Decks by saltcooky
See All by saltcooky
SpatialRDDパッケージによる空間回帰不連続デザイン
saltcooky12
0
120
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
240
FIBA W杯の日本代表って組み合わせ次第で2次ラウンド行けたんじゃね?をデータで検証
saltcooky12
0
340
階層クラスタリングにおける仮説検定
saltcooky12
0
1.1k
データドリブンな仮説検証のためのSelective Inference
saltcooky12
1
1.4k
ストリートスナップデータに 統計的ネットワーク分析の適用を試みた
saltcooky12
0
870
Other Decks in Science
See All in Science
People who frequently use ChatGPT for writing tasks are accurate and robust detectors of AI-generated text
rudorudo11
0
170
Ignite の1年間の軌跡
ktombow
0
200
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
1.1k
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
650
Vibecoding for Product Managers
ibknadedeji
0
120
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
260
白金鉱業Meetup_Vol.20 効果検証ことはじめ / Introduction to Impact Evaluation
brainpadpr
2
1.5k
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.8k
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
PRO
0
130
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
300
イロレーティングを活用した関東大学サッカーの定量的実力評価 / A quantitative performance evaluation of Kanto University Football Association using Elo rating
konakalab
0
160
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
490
Featured
See All Featured
End of SEO as We Know It (SMX Advanced Version)
ipullrank
2
3.9k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Producing Creativity
orderedlist
PRO
348
40k
A better future with KSS
kneath
240
18k
Deep Space Network (abreviated)
tonyrice
0
33
The AI Search Optimization Roadmap by Aleyda Solis
aleyda
1
5.1k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Typedesign – Prime Four
hannesfritz
42
2.9k
Unsuck your backbone
ammeep
671
58k
Transcript
3Ͱ༗໊ֆըΛ҆શʹങ͍͍ͨ !TBMUDPPLZ 5PLZP3 1
୭ʁ 2 !TBMUDPPLZ • 3ྺɿ͙Β͍͔ͳ • ۈઌɿຊʹ͋Δ*5ܥͷձࣾ • ࣄ༰ɿ3%తͳ෦ॺͰ
ɹɹɹ3Λͬͨσʔλੳ͞Μ ػցֶशͷॲཧ࡞ • झຯɿϑΝογϣϯඒज़ؗ८Γ
δϟΫιϯϙϩοΫΛ͍ͬͯ·͔͢ 3 +BDLTPO1PMMPL நදݱओٛͷදతͳΞϝϦΧਓըՈ
δϟΫιϯϙϩοΫΛ͍ͬͯ·͔͢ 4 υϩοϓϖΠϯςΟϯά
δϟΫιϯϙϩοΫΛ͍ͬͯ·͔͢ 5 ʰ/P ʱ ºNN
δϟΫιϯϙϩοΫΛ͍ͬͯ·͔͢ 6 ʰ/P ʱ ºNN ݄ ݱඒज़࠷ߴֹ ࣌ ԯສυϧ
δϟΫιϯϙϩοΫΛ͍ͬͯ·͔͢ 7 ཉ͍͠ʂ
δϟΫιϯϙϩοΫΛ͍ͬͯ·͔͢ 8 ͚Ͳɺِଟͦ͏ʜ
ϙϩοΫͷֆըΛղੳͨ͠ݚڀ 9 • Fractal analysis of Pollock’s drip paintings.
(R.P.Taylor, et al , 1999) • On multifractal structure in non-representational art. (J.R.Nureika, et al , 2005) ˠϙϩοΫͷυϩοϓϖΠϯςΟϯάʹ ϑϥΫλϧߏ͕͋Δ͜ͱ͕Θ͔Δ
ϑϥΫλϧߏ 10 ਤܗͷҰ෦Λ֦େ͢Δͱɺશମͱ૬ࣅ͢Δܗ ࣗݾ૬ࣅੑ ͕ଘࡏ͢Δߏ FYγΣϧϐϯεΩʔͷΪϟεέοτ
ϑϥΫλϧ࣍ݩ ༰ྔ࣍ݩϋυϧϑ࣍ݩ 11 w ͲΕ͚ͩࣗݾ૬ࣅੑ͕͋Δ͔Λࣔ͢ྔ w ֤ۭؒํʹ-ʹॖΊΔͱɺͱͷਤܗΛຒΊΔʹ/-%ݸ ͷࣗݾ૬ࣅਤܗ͕ඞཁͱ͍͏͜ͱΛදݱ w
ʙͷؒΛͱΓɺʹ͍ۙ΄Ͳࣗݾ૬ؔੑ͕ڧ͍ w γΣϧϐϯεΩʔͷΪϟεέοτͷ࣍ݩ w ղੳతʹ#PY$PVOUJOHΞϧΰϦζϜʹΑΓਪఆ
#PY$PVOUJOHΞϧΰϦζϜ 12 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ ̍ରը૾ΛҰลͷ͕͞-ͷϒϩοΫʹ͚Δ
#PY$PVOUJOHΞϧΰϦζϜ 13 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ ̍ରը૾ΛҰลͷ͕͞-ͷϒϩοΫʹ͚Δ
#PY$PVOUJOHΞϧΰϦζϜ 14 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ ̎ର͕өΓࠐΜͰ͍ΔϒϩοΫͷ/ - Λ͑Δ
#PY$PVOUJOHΞϧΰϦζϜ 15 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ ϒϩοΫେ͖͞-Λখͯ͘͞͠ରը૾Λ͚Δ
#PY$PVOUJOHΞϧΰϦζϜ 16 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ ର͕өΓࠐΜͰ͍ΔϒϩοΫͷ/ - Λ͑Δ
#PY$PVOUJOHΞϧΰϦζϜ 17 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ େ͖͞-Λখ͘͞͠ͳ͕Βର͕өΔϒϩοΫΛΧϯτ͢Δ ɹ͜ͱΛ܁Γฦ͢
#PY$PVOUJOHΞϧΰϦζϜ 18 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ ϒϩοΫͷେ͖͞-ͱΧϯτ/ - ͷ྆ରάϥϑʹ͓͚Δ ɹճؼઢͷ͖͕ϑϥΫλϧ࣍ݩʹͳΔ log N(L)
= D log(L) + K ʢ,ఆʣ MPH/ - MPH- ޯ%ʹ ϑϥΫλϧ࣍ݩ
19 w ͳͥ͜ΕͰϑϥΫλϧ࣍ݩΛਪఆ͢Δ͜ͱ͕Ͱ͖Δͷ͔ ఆ͔ٛΒͷมܗ log N(L) = log( a
L )D log N(L) = D log(L) + D log(a) #PY$PVOUJOHΞϧΰϦζϜ ʢBɿਖ਼ͷఆʣ
20 δϟΫιϯϙϩοΫͷ࡞ͷ߹ w -DNͰϑϥΫλϧ࣍ݩ͕มԽ w %% -Ҏ্ %- -ະຬ ʰ#MVF1PMFT/VNCFS
ʱ MPH - NN MPH / #PY$PVOUJOHΞϧΰϦζϜ
ϙϩοΫͷֆըͷಛ 21 ʢ̍ʣ̎छͷϑϥΫλϧύλʔϯ͔ΒΔ ʢ̎ʣ༷ʑͳεέʔϧʹ͓͍ͯϑϥΫλϧੑ͕ଘࡏ ʢ̏ʣϑϥΫλϧ࣍ݩରάϥϑͷޯ͔ΒٻΊΕΔ ʢ̐ʣ%-ʼ%% ʢ̑ʣۙࣅۂઢͷඪ४ภ͕ࠩখ͍͞ d ʢ̒ʣ֤৭ͷͰ্هͷ̑ͭͷಛΛຬͨ͢
3Ͱ#PY$PVOUJOH 22 7PY31BDLBHF
3Ͱ#PY$PVOUJOH 23 γΣϧϐϯεΩʔͷΪϟεέοτͷϑϥΫλϧ࣍ݩΛٻΊΔ ը૾ॲཧ
3Ͱ#PY$PVOUJOH 24 γΣϧϐϯεΩʔͷΪϟεέοτͷϑϥΫλϧ࣍ݩΛٻΊΔ ϑϥΫλϧ࣍ݩΛٻΊΔ
3Ͱ#PY$PVOUJOH 25 γΣϧϐϯεΩʔͷΪϟεέοτͷϑϥΫλϧ࣍ݩΛٻΊΔ ྆ରάϥϑͱճؼઢͷՄࢹԽ 0 2 4 6 8 -7
-6 -5 -4 -3 -2 log(1/res) log(N) Box Counting method : D=1.5747
؆୯ʹ·ͱΊ 26 w δϟΫιϯϙϩοΫͷֆըʹϑϥΫλϧߏ͕ଘࡏ͢Δ w ϑϥΫλϧߏͷϑϥΫλϧ࣍ݩΛղੳతʹٻΊΔͨΊʹ ɺ#PY$PVOUJOHΞϧΰϦζϜΛ༻͍Δ w
3Ͱ7PY3QBDLBHFͷCPY@DPVOUJOHؔͰ࣮ߦͰ͖Δ
&/% 27 &OKPZ
ࢀߟࢿྉ 28 •RʹΑΔը૾ॲཧɿimagerύοέʔδͷ͍ํ https://htsuda.net/archives/1985 •ϘοΫεΧϯτ๏ʹΑΔඐഀބͷϑϥΫλϧ࣍ݩ https://shiga-u.repo.nii.ac.jp/?action=repository_uri&item_id=1751