Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Rで有名絵画を安全に買いたい
Search
saltcooky
September 16, 2022
Science
0
340
Rで有名絵画を安全に買いたい
TokyoR #101 LT
saltcooky
September 16, 2022
Tweet
Share
More Decks by saltcooky
See All by saltcooky
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
200
FIBA W杯の日本代表って組み合わせ次第で2次ラウンド行けたんじゃね?をデータで検証
saltcooky12
0
330
階層クラスタリングにおける仮説検定
saltcooky12
0
1k
データドリブンな仮説検証のためのSelective Inference
saltcooky12
1
1.4k
ストリートスナップデータに 統計的ネットワーク分析の適用を試みた
saltcooky12
0
850
Other Decks in Science
See All in Science
mathematics of indirect reciprocity
yohm
1
190
Optimization of the Tournament Format for the Nationwide High School Kyudo Competition in Japan
konakalab
0
100
03_草原和博_広島大学大学院人間社会科学研究科教授_デジタル_シティズンシップシティで_新たな_学び__をつくる.pdf
sip3ristex
0
620
Trend Classification of InSAR Displacement Time Series Using SAE–CNN
satai
4
720
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.4k
深層学習を用いた根菜類の個数カウントによる収量推定法の開発
kentaitakura
0
180
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
360
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
340
データマイニング - グラフデータと経路
trycycle
PRO
1
220
Accelerated Computing for Climate forecast
inureyes
PRO
0
120
アナログ計算機『計算尺』を愛でる Midosuji Tech #4/Analog Computing Device Slide Rule now and then
quiver
1
280
学術講演会中央大学学員会府中支部
tagtag
0
310
Featured
See All Featured
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Automating Front-end Workflow
addyosmani
1371
200k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
Documentation Writing (for coders)
carmenintech
75
5k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
114
20k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
Being A Developer After 40
akosma
91
590k
The World Runs on Bad Software
bkeepers
PRO
71
11k
The Pragmatic Product Professional
lauravandoore
36
6.9k
Docker and Python
trallard
46
3.6k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Transcript
3Ͱ༗໊ֆըΛ҆શʹങ͍͍ͨ !TBMUDPPLZ 5PLZP3 1
୭ʁ 2 !TBMUDPPLZ • 3ྺɿ͙Β͍͔ͳ • ۈઌɿຊʹ͋Δ*5ܥͷձࣾ • ࣄ༰ɿ3%తͳ෦ॺͰ
ɹɹɹ3Λͬͨσʔλੳ͞Μ ػցֶशͷॲཧ࡞ • झຯɿϑΝογϣϯඒज़ؗ८Γ
δϟΫιϯϙϩοΫΛ͍ͬͯ·͔͢ 3 +BDLTPO1PMMPL நදݱओٛͷදతͳΞϝϦΧਓըՈ
δϟΫιϯϙϩοΫΛ͍ͬͯ·͔͢ 4 υϩοϓϖΠϯςΟϯά
δϟΫιϯϙϩοΫΛ͍ͬͯ·͔͢ 5 ʰ/P ʱ ºNN
δϟΫιϯϙϩοΫΛ͍ͬͯ·͔͢ 6 ʰ/P ʱ ºNN ݄ ݱඒज़࠷ߴֹ ࣌ ԯສυϧ
δϟΫιϯϙϩοΫΛ͍ͬͯ·͔͢ 7 ཉ͍͠ʂ
δϟΫιϯϙϩοΫΛ͍ͬͯ·͔͢ 8 ͚Ͳɺِଟͦ͏ʜ
ϙϩοΫͷֆըΛղੳͨ͠ݚڀ 9 • Fractal analysis of Pollock’s drip paintings.
(R.P.Taylor, et al , 1999) • On multifractal structure in non-representational art. (J.R.Nureika, et al , 2005) ˠϙϩοΫͷυϩοϓϖΠϯςΟϯάʹ ϑϥΫλϧߏ͕͋Δ͜ͱ͕Θ͔Δ
ϑϥΫλϧߏ 10 ਤܗͷҰ෦Λ֦େ͢Δͱɺશମͱ૬ࣅ͢Δܗ ࣗݾ૬ࣅੑ ͕ଘࡏ͢Δߏ FYγΣϧϐϯεΩʔͷΪϟεέοτ
ϑϥΫλϧ࣍ݩ ༰ྔ࣍ݩϋυϧϑ࣍ݩ 11 w ͲΕ͚ͩࣗݾ૬ࣅੑ͕͋Δ͔Λࣔ͢ྔ w ֤ۭؒํʹ-ʹॖΊΔͱɺͱͷਤܗΛຒΊΔʹ/-%ݸ ͷࣗݾ૬ࣅਤܗ͕ඞཁͱ͍͏͜ͱΛදݱ w
ʙͷؒΛͱΓɺʹ͍ۙ΄Ͳࣗݾ૬ؔੑ͕ڧ͍ w γΣϧϐϯεΩʔͷΪϟεέοτͷ࣍ݩ w ղੳతʹ#PY$PVOUJOHΞϧΰϦζϜʹΑΓਪఆ
#PY$PVOUJOHΞϧΰϦζϜ 12 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ ̍ରը૾ΛҰลͷ͕͞-ͷϒϩοΫʹ͚Δ
#PY$PVOUJOHΞϧΰϦζϜ 13 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ ̍ରը૾ΛҰลͷ͕͞-ͷϒϩοΫʹ͚Δ
#PY$PVOUJOHΞϧΰϦζϜ 14 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ ̎ର͕өΓࠐΜͰ͍ΔϒϩοΫͷ/ - Λ͑Δ
#PY$PVOUJOHΞϧΰϦζϜ 15 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ ϒϩοΫେ͖͞-Λখͯ͘͞͠ରը૾Λ͚Δ
#PY$PVOUJOHΞϧΰϦζϜ 16 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ ର͕өΓࠐΜͰ͍ΔϒϩοΫͷ/ - Λ͑Δ
#PY$PVOUJOHΞϧΰϦζϜ 17 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ େ͖͞-Λখ͘͞͠ͳ͕Βର͕өΔϒϩοΫΛΧϯτ͢Δ ɹ͜ͱΛ܁Γฦ͢
#PY$PVOUJOHΞϧΰϦζϜ 18 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ ϒϩοΫͷେ͖͞-ͱΧϯτ/ - ͷ྆ରάϥϑʹ͓͚Δ ɹճؼઢͷ͖͕ϑϥΫλϧ࣍ݩʹͳΔ log N(L)
= D log(L) + K ʢ,ఆʣ MPH/ - MPH- ޯ%ʹ ϑϥΫλϧ࣍ݩ
19 w ͳͥ͜ΕͰϑϥΫλϧ࣍ݩΛਪఆ͢Δ͜ͱ͕Ͱ͖Δͷ͔ ఆ͔ٛΒͷมܗ log N(L) = log( a
L )D log N(L) = D log(L) + D log(a) #PY$PVOUJOHΞϧΰϦζϜ ʢBɿਖ਼ͷఆʣ
20 δϟΫιϯϙϩοΫͷ࡞ͷ߹ w -DNͰϑϥΫλϧ࣍ݩ͕มԽ w %% -Ҏ্ %- -ະຬ ʰ#MVF1PMFT/VNCFS
ʱ MPH - NN MPH / #PY$PVOUJOHΞϧΰϦζϜ
ϙϩοΫͷֆըͷಛ 21 ʢ̍ʣ̎छͷϑϥΫλϧύλʔϯ͔ΒΔ ʢ̎ʣ༷ʑͳεέʔϧʹ͓͍ͯϑϥΫλϧੑ͕ଘࡏ ʢ̏ʣϑϥΫλϧ࣍ݩରάϥϑͷޯ͔ΒٻΊΕΔ ʢ̐ʣ%-ʼ%% ʢ̑ʣۙࣅۂઢͷඪ४ภ͕ࠩখ͍͞ d ʢ̒ʣ֤৭ͷͰ্هͷ̑ͭͷಛΛຬͨ͢
3Ͱ#PY$PVOUJOH 22 7PY31BDLBHF
3Ͱ#PY$PVOUJOH 23 γΣϧϐϯεΩʔͷΪϟεέοτͷϑϥΫλϧ࣍ݩΛٻΊΔ ը૾ॲཧ
3Ͱ#PY$PVOUJOH 24 γΣϧϐϯεΩʔͷΪϟεέοτͷϑϥΫλϧ࣍ݩΛٻΊΔ ϑϥΫλϧ࣍ݩΛٻΊΔ
3Ͱ#PY$PVOUJOH 25 γΣϧϐϯεΩʔͷΪϟεέοτͷϑϥΫλϧ࣍ݩΛٻΊΔ ྆ରάϥϑͱճؼઢͷՄࢹԽ 0 2 4 6 8 -7
-6 -5 -4 -3 -2 log(1/res) log(N) Box Counting method : D=1.5747
؆୯ʹ·ͱΊ 26 w δϟΫιϯϙϩοΫͷֆըʹϑϥΫλϧߏ͕ଘࡏ͢Δ w ϑϥΫλϧߏͷϑϥΫλϧ࣍ݩΛղੳతʹٻΊΔͨΊʹ ɺ#PY$PVOUJOHΞϧΰϦζϜΛ༻͍Δ w
3Ͱ7PY3QBDLBHFͷCPY@DPVOUJOHؔͰ࣮ߦͰ͖Δ
&/% 27 &OKPZ
ࢀߟࢿྉ 28 •RʹΑΔը૾ॲཧɿimagerύοέʔδͷ͍ํ https://htsuda.net/archives/1985 •ϘοΫεΧϯτ๏ʹΑΔඐഀބͷϑϥΫλϧ࣍ݩ https://shiga-u.repo.nii.ac.jp/?action=repository_uri&item_id=1751