Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Hybrid Autoregressive Transducer [輪講発表資料]
Search
shibutani
June 22, 2022
Research
0
290
Hybrid Autoregressive Transducer [輪講発表資料]
Hybrid Autoregressive Transducer に関する輪講発表資料です。
shibutani
June 22, 2022
Tweet
Share
More Decks by shibutani
See All by shibutani
全自動コードレビューの夢 〜実際に活用されるAIコードレビューの実現に向けて〜
shibukazu
3
990
Perceiver: General Perception with Iterative [輪講発表資料]
shibukazu
0
98
Other Decks in Research
See All in Research
最適決定木を用いた処方的価格最適化
mickey_kubo
4
1.8k
NLP2025参加報告会 LT資料
hargon24
1
350
最適化と機械学習による問題解決
mickey_kubo
0
160
電通総研の生成AI・エージェントの取り組みエンジニアリング業務向けAI活用事例紹介
isidaitc
1
850
CSP: Self-Supervised Contrastive Spatial Pre-Training for Geospatial-Visual Representations
satai
3
250
20250725-bet-ai-day
cipepser
2
370
Trust No Bot? Forging Confidence in AI for Software Engineering
tomzimmermann
1
260
業界横断 副業・兼業者の実態調査
fkske
0
220
LLM-as-a-Judge: 文章をLLMで評価する@教育機関DXシンポ
k141303
3
860
Combinatorial Search with Generators
kei18
0
590
90 分で学ぶ P 対 NP 問題
e869120
19
7.9k
経済学と機械学習:因果推論と密度比推定を中心に
masakat0
0
130
Featured
See All Featured
Navigating Team Friction
lara
188
15k
Site-Speed That Sticks
csswizardry
10
770
The Pragmatic Product Professional
lauravandoore
36
6.8k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
Thoughts on Productivity
jonyablonski
69
4.8k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
YesSQL, Process and Tooling at Scale
rocio
173
14k
The Cult of Friendly URLs
andyhume
79
6.5k
Statistics for Hackers
jakevdp
799
220k
The Cost Of JavaScript in 2023
addyosmani
53
8.8k
Transcript
Hybrid Autoregressive Transducer (HAT) [Variani, Rybach+ 2020] 京都大学 音声メディア研究室 M1
渋谷和樹 1
E2E音声認識 E2Eモデルはシンプルで学習しやすい パラレルデータの収集が難しいため、外部言語モデルを組み合わせたい 外部言語モデルの活用 ShallowFusion y = ∗ argmax
logP(y∣x) + logP (y) y ( LM ) E2Eモデル自体にも言語モデルが含まれてしまう(暗黙の言語モデル) 暗黙の言語モデルによる評価スコアを取り除いて推論を行いたい ⇒Transducerアーキテクチャの利用 Introduction 2
Transducer 3
Transducer 特徴 E2E音声認識のアーキテクチャの一つ CTCと同様に事前のアライメントが不要 CTCと異なり、出力系列同士の関連性も考慮 (ラベル+ブランク)の事後確率を出力 y ~ 4
Transducer 内部言語モデル Transducerではエンコーダーに依存しない出力 ラベルの事後確率(言語モデル確率) を計算できる から内部言語モデルスコアを計算する P(y∣y ) 0:u
logP (Y ) = ILM logP(y ∣y ) ∑ u=0 U−1 u+1 0:u 5
HAT 6
HAT 特徴 Transducerベースのアーキテクチャ 非ブランクラベルのみの事後確率を計算できる 正確な?言語モデル確率を計算できる 7
TransducerとHATの比較 HAT Transducer ネットワーク出力は 言語モデル確率はブランクラベル以外の Softmaxで計算される s (
∣y ) t,u y ~ 0:u HAT ネットワーク出力は 非ブランクラベルのスコアを含まない 言語モデル確率はすべてのラベルの Softmaxで計算される s (y∣y ) t,u 0:u 8
結果 9
実験設定 データセット: Google VoiceSearch Traffic 評価指標: WER アーキテクチャ: Encoder: 5layer,
2048cells/layerのLSTM Pred Net: 2layer, 256cells/layerのLSTM Joint Net: 1layerの線形層 入力: 対数メルスペクトログラム 結果 10
学習 強制アライメントを行い、教師ラベル(文章)の音素列を得る 各モデルは42種類の音素の事後確率を予測 各モデル単体で学習を行う(学習時は外部言語モデルを利用しない) 推論 各モデルを音響モデルとして使用 WFSTとして発音辞書・外部言語モデルを組み合わせてデコーディング 結果 11
各手法のデコード方法 Cross-Entropy CTC, RNN-T HAT 結果 = y ~∗
argmax λ log P(x ∣ ) + y ~ 1 (∏ t=1 T t y ~ t ) logP (B( )) LM y ~ = y ~∗ argmax λ logP ( ∣x) + y ~ 1 ′ y ~ logP (B( )) + LM y ~ λ v( ) 2 y ~ = y ~∗ argmax λ logP( ∣x) + y ~ 1 y ~ logP (B( )) − LM y ~ λ logP (B( )) 2 ILM y ~ 12
他手法との比較 2nd-pass: リスコアリングを行った場合の結果 いずれのケースでも他手法より優れた性能を示した 結果 13
結果 内部言語モデルの学習状況の可視化 Prior cost: 各エポックごとの平均パープレキシティと解釈 MTL: Prior costを最小化するマルチタスク学習 パープレキシティは一度下がり、徐々に増加 音素認識では言語モデルは最適化されない?
学習初期は言語情報に重点を置いている? − logP (y) ∣D∣ 1 ∑ y∈D ILM 14
結果 内部言語モデルの寄与率とWER HAT 付近で最も良い性能 ただのShallowFusionではなく、内部言語 モデルの影響を取り除くことが重要 HAT+MTL Prior costを最小化しているが性能はあまり 向上していない
よい内部言語モデルを構築することは重要 ではないということ? λ = 2 1 15
Pred Netへの入力長の影響 入力系列長が長いほどパープレキシティは減少しているが、WERは変化していない 系列が長いとExposure Biasの影響が大きくなるから? Exposure Bias: 学習時はTeacherForcingを行うが、推論時は教師ラベルが存在しないこと 結果 16
まとめ 17
E2Eモデルを音響モデルとして利用するためのアプローチであるHATを提案 内部言語モデルのパープレキシティを評価できるようになった →外部言語モデルの必要性の判断基準となる まとめ 18