Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Hybrid Autoregressive Transducer [輪講発表資料]
Search
shibutani
June 22, 2022
Research
0
290
Hybrid Autoregressive Transducer [輪講発表資料]
Hybrid Autoregressive Transducer に関する輪講発表資料です。
shibutani
June 22, 2022
Tweet
Share
More Decks by shibutani
See All by shibutani
はじめてのOSS開発からみえたGo言語の強み
shibukazu
1
160
全自動コードレビューの夢 〜実際に活用されるAIコードレビューの実現に向けて〜
shibukazu
9
4k
Perceiver: General Perception with Iterative [輪講発表資料]
shibukazu
0
100
Other Decks in Research
See All in Research
Delta Airlines® Customer Care in the U.S.: How to Reach Them Now
bookingcomcustomersupportusa
0
110
カスタマーサクセスの視点からAWS Summitの展示を考える~製品開発で活用できる勘所~
masakiokuda
2
190
Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
masakat0
0
170
数理最適化と機械学習の融合
mickey_kubo
16
9.3k
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
440
Combinatorial Search with Generators
kei18
0
770
単施設でできる臨床研究の考え方
shuntaros
0
2.7k
利用シーンを意識した推薦システム〜SpotifyとAmazonの事例から〜
kuri8ive
1
250
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
110
データxデジタルマップで拓く ミラノ発・地域共創最前線
mapconcierge4agu
0
210
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
160
MIRU2025 チュートリアル講演「ロボット基盤モデルの最前線」
haraduka
15
7.9k
Featured
See All Featured
Done Done
chrislema
185
16k
RailsConf 2023
tenderlove
30
1.2k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.2k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.5k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
810
How GitHub (no longer) Works
holman
315
140k
GitHub's CSS Performance
jonrohan
1032
460k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.1k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Transcript
Hybrid Autoregressive Transducer (HAT) [Variani, Rybach+ 2020] 京都大学 音声メディア研究室 M1
渋谷和樹 1
E2E音声認識 E2Eモデルはシンプルで学習しやすい パラレルデータの収集が難しいため、外部言語モデルを組み合わせたい 外部言語モデルの活用 ShallowFusion y = ∗ argmax
logP(y∣x) + logP (y) y ( LM ) E2Eモデル自体にも言語モデルが含まれてしまう(暗黙の言語モデル) 暗黙の言語モデルによる評価スコアを取り除いて推論を行いたい ⇒Transducerアーキテクチャの利用 Introduction 2
Transducer 3
Transducer 特徴 E2E音声認識のアーキテクチャの一つ CTCと同様に事前のアライメントが不要 CTCと異なり、出力系列同士の関連性も考慮 (ラベル+ブランク)の事後確率を出力 y ~ 4
Transducer 内部言語モデル Transducerではエンコーダーに依存しない出力 ラベルの事後確率(言語モデル確率) を計算できる から内部言語モデルスコアを計算する P(y∣y ) 0:u
logP (Y ) = ILM logP(y ∣y ) ∑ u=0 U−1 u+1 0:u 5
HAT 6
HAT 特徴 Transducerベースのアーキテクチャ 非ブランクラベルのみの事後確率を計算できる 正確な?言語モデル確率を計算できる 7
TransducerとHATの比較 HAT Transducer ネットワーク出力は 言語モデル確率はブランクラベル以外の Softmaxで計算される s (
∣y ) t,u y ~ 0:u HAT ネットワーク出力は 非ブランクラベルのスコアを含まない 言語モデル確率はすべてのラベルの Softmaxで計算される s (y∣y ) t,u 0:u 8
結果 9
実験設定 データセット: Google VoiceSearch Traffic 評価指標: WER アーキテクチャ: Encoder: 5layer,
2048cells/layerのLSTM Pred Net: 2layer, 256cells/layerのLSTM Joint Net: 1layerの線形層 入力: 対数メルスペクトログラム 結果 10
学習 強制アライメントを行い、教師ラベル(文章)の音素列を得る 各モデルは42種類の音素の事後確率を予測 各モデル単体で学習を行う(学習時は外部言語モデルを利用しない) 推論 各モデルを音響モデルとして使用 WFSTとして発音辞書・外部言語モデルを組み合わせてデコーディング 結果 11
各手法のデコード方法 Cross-Entropy CTC, RNN-T HAT 結果 = y ~∗
argmax λ log P(x ∣ ) + y ~ 1 (∏ t=1 T t y ~ t ) logP (B( )) LM y ~ = y ~∗ argmax λ logP ( ∣x) + y ~ 1 ′ y ~ logP (B( )) + LM y ~ λ v( ) 2 y ~ = y ~∗ argmax λ logP( ∣x) + y ~ 1 y ~ logP (B( )) − LM y ~ λ logP (B( )) 2 ILM y ~ 12
他手法との比較 2nd-pass: リスコアリングを行った場合の結果 いずれのケースでも他手法より優れた性能を示した 結果 13
結果 内部言語モデルの学習状況の可視化 Prior cost: 各エポックごとの平均パープレキシティと解釈 MTL: Prior costを最小化するマルチタスク学習 パープレキシティは一度下がり、徐々に増加 音素認識では言語モデルは最適化されない?
学習初期は言語情報に重点を置いている? − logP (y) ∣D∣ 1 ∑ y∈D ILM 14
結果 内部言語モデルの寄与率とWER HAT 付近で最も良い性能 ただのShallowFusionではなく、内部言語 モデルの影響を取り除くことが重要 HAT+MTL Prior costを最小化しているが性能はあまり 向上していない
よい内部言語モデルを構築することは重要 ではないということ? λ = 2 1 15
Pred Netへの入力長の影響 入力系列長が長いほどパープレキシティは減少しているが、WERは変化していない 系列が長いとExposure Biasの影響が大きくなるから? Exposure Bias: 学習時はTeacherForcingを行うが、推論時は教師ラベルが存在しないこと 結果 16
まとめ 17
E2Eモデルを音響モデルとして利用するためのアプローチであるHATを提案 内部言語モデルのパープレキシティを評価できるようになった →外部言語モデルの必要性の判断基準となる まとめ 18