Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Perceiver: General Perception with Iterative [輪...
Search
shibutani
June 22, 2022
Research
0
110
Perceiver: General Perception with Iterative [輪講発表資料]
Perceiver: General Perception with Iterativeに関する輪講発表資料
shibutani
June 22, 2022
Tweet
Share
More Decks by shibutani
See All by shibutani
はじめてのOSS開発からみえたGo言語の強み
shibukazu
4
1.2k
全自動コードレビューの夢 〜実際に活用されるAIコードレビューの実現に向けて〜
shibukazu
11
5k
Hybrid Autoregressive Transducer [輪講発表資料]
shibukazu
0
340
Other Decks in Research
See All in Research
一人称視点映像解析の最先端(MIRU2025 チュートリアル)
takumayagi
6
4.2k
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
330
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
430
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
11
4.9k
Nullspace MPC
mizuhoaoki
1
430
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
350
湯村研究室の紹介2025 / yumulab2025
yumulab
0
200
Vision and LanguageからのEmbodied AIとAI for Science
yushiku
PRO
1
590
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
480
問いを起点に、社会と共鳴する知を育む場へ
matsumoto_r
PRO
0
710
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
260
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
920
Featured
See All Featured
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
It's Worth the Effort
3n
187
29k
Fireside Chat
paigeccino
41
3.7k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
Code Review Best Practice
trishagee
73
19k
Statistics for Hackers
jakevdp
799
230k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
70
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
How STYLIGHT went responsive
nonsquared
100
5.9k
Faster Mobile Websites
deanohume
310
31k
BBQ
matthewcrist
89
9.9k
Transcript
Perceiver: General Perception with Iterative Attention [Jaegle, Gimeno+ 2020] 京都大学
音声メディア研究室 M1 渋谷和樹 1
これまではモダリティに依存したアーキテクチャが主流 ⇒アーキテクチャがモダリティにロックインされる Transformerはモダリティに依存しない Transformerの計算量は入力インデックスの二乗に比例 任意の入力長に対応できるTransformerベースのアーキテクチャが必要 ⇒Perceiverの登場 Introduction 2
Perceiver 3
Transformerベースのモダリティ非依存アーキテクチャ CrossAttentionによってTransformerの計算量を削減 画像・音声・点群において優れた性能 Perceiver 4
アーキテクチャ図 計算量 Cross Attention: Transformer: アーキテクチャ(1ブロック) O(M × N ×
D ) ≃ ′ M≪N O(N × D ) ′ O(L × M × 2 D ) 2 5
Attentionは入力系列の順序に依存しない Transformerと同様の位置エンコーディングを利用 p = i,2k sin(f πx
) k d p = i,2k+1 cos(f πx ) k d : ハイパーパラメータ : 次元 における位置( ) Transformerと異なり、加算ではなく入力へ連結する 位置エンコーディング f k x d d −1 ∼ 1 6
結果(Image) 7
実験設定 データセット: ImageNet ピクセルレベルの並び替えあり・並び替えなしで実験 評価指標: 予測ラベルの正解率 アーキテクチャ: (CrossAttention + TransformerEncoder
* 6) * 8 入力ベクトル: 50176x3 潜在ベクトル: 512x1024 結果(Image) 8
比較モデル ResNet-50: レイヤー数50のCNNベースモデル ViT-B-16: Transformerベースモデル 入力の処理に16x16の畳み込みを利用 Transformer: 64x64にダウンサンプリングした上で入力 結果(Image -
並び替えなしの場合) 9
結果 モダリティの仮定をせずにベースラインと互角の性能を発揮 ベースラインに位置エンコーディングを入力しても性能は向上しなかった 結果(Image - 並び替えなしの場合) 10
設定 各画像内のピクセルを同一の規則に従って並び替える 帰納バイアスの利用を防ぐ 並び替え前に位置エンコーディングを行う 位置エンコーディングからピクセル同士の関連は学習可能 Learned pos: 位置エンコーディングを学習する inputRF: 入力レイヤーにおける受容野の大きさ
結果(Image - 並び替えありの場合) 11
結果 モダリティを仮定しないTransformerやPerceiverでは性能が悪化しなかった ViTは性能が劣化しづらかった ViTで採用されている畳み込みフィルターはResNet50より大きいから? 最終的にTransformerでパッチ間の関係を見ていることも関係してそう? 結果(Image - 並び替えありの場合) 12
結果(Audio and Video) 13
実験設定 データセット: AudioSet Audio, Video, Audio&Videoで実験 評価指標: meanAveragePrecision アーキテクチャ: (CrossAttention+TransformerEncoder*8)*2
入力ベクトル 生音声: 480x128 メルスペクトログラム: 4800x1 動画: 12544x128 潜在ベクトル: サイズ記載なし 結果(Audio and Video) 14
結果 いずれの入力パターンでもほとんどの比較手法と同等以上の性能 CNN-14に関してはbalancingおよびmixupなどの前処理を除くと性能が下回った Attention AV-fusionとの違いは今後の調査課題 結果(Audio and Video) 15
結果(Point clouds) 16
実験設定 データセット: ModelNet40 評価指標: 予測ラベルの正解率 アーキテクチャ: (CrossAttention+TransformerEncoder*6)*2 入力ベクトル: サイズ記載なし(おそらく単純にflatten?) 潜在ベクトル:
サイズ記載なし 結果(Point cloulds) 17
結果 PointNet++以外の手法より優れていた PointNet++ではドメイン知識に基づいたデータ拡張や特徴量エンジニアリングを行って いるため比較対象としては不適? 結果(Point cloulds) 18
まとめ 19
TransformerベースのPerceiverを提案 Cross-Attentionの利用により、Transformerの計算量を削減 画像・音声・点群いずれにおいても極めて高い性能を発揮 モダリティ特有のデータ拡張や位置エンコーディングへの依存を減らすのが今後の課題 まとめ 20