References

• W. Wenjuan, F. Lu, and L. Chunchen. Mixed Causal Structure Discovery with Application to Prescriptive

Pricing. In Proc. 27th International Joint Conference on Artificial Intelligence (IJCAI2018), pp. xx--xx, Stockholm,

Sweden, 2018.

• Y. Komatsu, S. Shimizu and H. Shimodaira. Assessing statistical reliability of LiNGAM via multiscale bootstrap.

In Proc. International Conference on Artificial Neural Networks (ICANN2010), pp.309-314, Thessaloniki, Greece,

2010.

• K. Biza, I. Tsamardinos, S. Triantafillou. Tuning causal discovery algorithms. In Proc. Probabilistic Graphical

Models (PGM2020), 2020.

• R. Silva, R. Scheines, C. Glymour, and P. Spirtes. Learning the structure of linear latent variable models.

Journal of Machine Learning Research, 7:191–246, 2006.

• F. Xie, R. Cai, B. Huang, C. Glymour, Z. Hao, and K. Zhang. Generalized independent noise condition for

estimating latent variable causal graphs. NeurIPS, 33, 2020.

• K. Zhang, M. Gong, P. Stojanov, B. Huang, Q. Liu, C. Glymour. Domain Adaptation as a Problem of Inference on

Graphical Models. NeurIPS, 33, 2020.

• M. J. Kusner, J. Loftus, C. Russell, R. Silva. Counterfactual Fairness. In Advances in Neural Information

Processing Systems 30 (NIPS 2017), 2017

• P. Blöbaum and S. Shimizu. Estimation of interventional effects of features on prediction. In Proc. 2017 IEEE

International Workshop on Machine Learning for Signal Processing (MLSP2017), pp. xx--xx, Tokyo, Japan, 2017.

47