independence of error variables, for example, by HSIC (Gretton et al., 2005) – Prediction accuracy using Markov boundary (Biza et al., 2020) – Compare with the results of other datasets in which causal graphs are expected to be similar – Check against background knowledge 7
and independence evaluation – https://lingam.readthedocs.io/en/latest/tutorial/lingam.html • p>n cases (Wang & Drton, 2020) – https://github.com/ysamwang/highDNG 8 ú ú ú û ù ê ê ê ë é + ú ú ú û ù ê ê ê ë é ú ú ú û ù ê ê ê ë é - = ú ú ú û ù ê ê ê ë é 2 1 3 2 1 3 2 1 3 0 3 . 1 0 0 0 5 . 1 0 0 0 e e e x x x x x x 0 0 0 0 0 0 0 0 ú û ù ê ë é + ú û ù ê ë é ú û ù ê ë é - = ú û ù ê ë é 2 1 ) 3 ( 2 ) 3 ( 1 ) 3 ( 2 ) 3 ( 1 0 3 . 1 0 0 e e r r r r 0 0 ) 3 ( 2 r ) 3 ( 1 r x3 x1 x2 0
predictive model to model the prediction mechanism 12 𝑋! 𝑋" 𝑋# 𝑋$ 𝑌 𝑋! 𝑋" # 𝑌 𝑋# 𝑋$ 𝑋! 𝑋" 𝑋# 𝑋$ 𝑌 Causal model Predictive model # 𝑌 Prediction mechanism model ( ) 4 4 4 ,e y f x = ( ) 4 3 2 1 , , , ˆ x x x x f y = ( ) ( ) c x do y E i = | ˆ https://lingam.readthedocs.io/en/latest/tutorial/causal_effect.html#identification-of- feature-with-greatest-causal-influence-on-prediction
regression • Which variable has the greatest intervention effect on MPG prediction? • Which variable should be intervened on to obtain a certain MPG prediction? (Control) 13 Cylinders Displacement Weight Horsepower Acceleration MPG ! 𝑀𝑃𝐺 Desired MPG prediction Suggested intervention on cylinders 15 8 21 6 30 4
Autoregressive model (Swanson & Granger, 1997) – Identifiability using non-Gaussianity (Hyvarinen et al., 2010) • https://lingam.readthedocs.io/en/latest/tutorial/var.html – VARMA instead of VAR (Kawahara et al., 2011) • https://lingam.readthedocs.io/en/latest/tutorial/varma.html • Nonstationarity – Assumption: Differences are stationarity (Moneta et al., 2013) 14 ) ( ) ( ) ( 0 t t t k e x B x + - = å = t t t x1(t) x1(t-1) x2(t-1) x2(t) e1(t-1) e2(t-1) e1(t) e2(t)
no hidden common causes, estimate the causal directions • For confounded pairs with hidden common causes, let them remain unknown 16 𝑥# 𝑥" 𝑓" 𝑥$ Underlying model Output 𝑥% 𝑥# 𝑥" 𝑥$ 𝑥% 𝑓# https://lingam.readthedocs.io/en/latest/tutorial/rcd.html
– Two pure measurement variables per latent factor needed to identify the measurement model (Silva et al., 2006; Xie et al., 2020) • Estimate the latent factors and then their causal graph 21 𝒇 = 𝐵𝒇+𝝐 𝒙 = 𝐺𝒇+𝒆 𝑥! 𝑥" & 𝑓! & 𝑓" 𝑥# 𝑥$ ?