Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
A Random Walk in Data Science and Machine Learn...
Search
szilard
February 12, 2020
0
290
A Random Walk in Data Science and Machine Learning in Practice - CEU, Business Analytics Masters - Budapest, Febr 2020
szilard
February 12, 2020
Tweet
Share
More Decks by szilard
See All by szilard
Gradient Boosting Machines (GBM): From Zero to Hero (with R and Python Code) - Data Con LA - Oct 2020
szilard
0
150
Make Machine Learning Boring Again: Best Practices for Using Machine Learning in Businesses - Albuquerque Machine Learning Meetup (Online) - Aug 2020
szilard
0
100
Better than Deep Learning: Gradient Boosting Machines (GBM) - eRum conference - invited talk - June 2020
szilard
0
94
Gradient Boosting Machines (GBM): From Zero to Hero (with R and Python Code) - LA Data Science Meetup - February 2020
szilard
0
89
Better than My Meetup/Conference Talks: Going Deeper in Various GBM Topics - GBM Advanced Workshop - Budapest, Nov 2019
szilard
0
54
Gradient Boosting Machines (GBM): From Zero to Hero (with R and Python Code) - Budapest BI Forum, Budapest, Nov 2019
szilard
0
130
Make Machine Learning Boring Again: Best Practices for Using Machine Learning in Businesses - LA Data Science Meetup - Playa Vista, August 2019
szilard
0
100
Better than Deep Learning: Gradient Boosting Machines (GBM) / 2019 edition - Budapest R and Data Science Meetups - Budapest, June 2019
szilard
0
81
Better than Deep Learning: Gradient Boosting Machines (GBM) / 2019 edition - LA R Meetup - Santa Monica, May 2019
szilard
0
20
Featured
See All Featured
Raft: Consensus for Rubyists
vanstee
137
6.7k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.5k
RailsConf 2023
tenderlove
29
970
Building Applications with DynamoDB
mza
93
6.2k
The Pragmatic Product Professional
lauravandoore
32
6.4k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
860
Navigating Team Friction
lara
183
15k
Designing on Purpose - Digital PM Summit 2013
jponch
116
7.1k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
173
50k
Optimising Largest Contentful Paint
csswizardry
33
3k
Visualization
eitanlees
146
15k
We Have a Design System, Now What?
morganepeng
51
7.3k
Transcript
A Random Walk in Data Science and Machine Learning in
Practice Szilard Pafka, PhD Chief Scientist, Epoch (USA) CEU, Business Analytics Masters Budapest, Febr 2020
None
Disclaimer: I am not representing my employer (Epoch) in this
talk I cannot confirm nor deny if Epoch is using any of the methods, tools, results etc. mentioned in this talk
None
None
CRISP-DM, 1999
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
Better than Deep Learning: Gradient Boosting Machines (GBM) - 2019
Updated Edition Szilard Pafka, PhD Chief Scientist, Epoch (USA) Barcelona, Los Angeles, Budapest, Berlin (confs/meetups) 2019
None
Disclaimer: I am not representing my employer (Epoch) in this
talk I cannot confirm nor deny if Epoch is using any of the methods, tools, results etc. mentioned in this talk
Source: Andrew Ng
Source: Andrew Ng
Source: Andrew Ng
None
None
None
None
Source: https://twitter.com/iamdevloper/
None
None
...
None
None
None
http://lowrank.net/nikos/pubs/empirical.pdf http://www.cs.cornell.edu/~alexn/papers/empirical.icml06.pdf
http://lowrank.net/nikos/pubs/empirical.pdf http://www.cs.cornell.edu/~alexn/papers/empirical.icml06.pdf
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
Source: Hastie etal, ESL 2ed
Source: Hastie etal, ESL 2ed
Source: Hastie etal, ESL 2ed
Source: Hastie etal, ESL 2ed
None
None
None
None
None
None
10x
None
None
None
10x
10x
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.argmin.net/2016/06/20/hypertuning/
None
None
None
None
None
None
None
CPU 1
CPU 1 CPU 2
CPU 1 CPU 2
CPU 1 CPU 2
CPU 1 CPU 2
None
None
None
None
None
None
None
*
None
no-one is using this crap
(2018)
(2018)
None
Source: https://www.linkedin.com/pulse/winning-solution-kaggledays-2019-competition-san-francisco-mark-peng/
Source: https://www.linkedin.com/pulse/winning-solution-kaggledays-2019-competition-san-francisco-mark-peng/
Source: https://www.linkedin.com/pulse/winning-solution-kaggledays-2019-competition-san-francisco-mark-peng/
Source: https://www.linkedin.com/pulse/winning-solution-kaggledays-2019-competition-san-francisco-mark-peng/
Source: https://www.linkedin.com/pulse/winning-solution-kaggledays-2019-competition-san-francisco-mark-peng/
Source: https://www.linkedin.com/pulse/winning-solution-kaggledays-2019-competition-san-francisco-mark-peng/
None
More:
None
A Few More Thoughts
None
None
None
None
None
None
None
None
None
None
None
None
None