Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ACL読み会2024@名大 REANO: Optimising Retrieval-Augme...
Search
Takuma Matsubara
September 29, 2024
Science
0
100
ACL読み会2024@名大 REANO: Optimising Retrieval-Augmented Reader Models through Knowledge Graph Generation
Takuma Matsubara
September 29, 2024
Tweet
Share
Other Decks in Science
See All in Science
LIMEを用いた判断根拠の可視化
kentaitakura
0
370
Coqで選択公理を形式化してみた
soukouki
0
230
化学におけるAI・シミュレーション活用のトレンドと 汎用原子レベルシミュレーター: Matlantisを使った素材開発
matlantis
0
300
All-in-One Bioinformatics Platform Realized with Snowflake ~ From In Silico Drug Discovery, Disease Variant Analysis, to Single-Cell RNA-seq
ktatsuya
PRO
0
260
DEIM2024 チュートリアル ~AWSで生成AIのRAGを使ったチャットボットを作ってみよう~
yamahiro
3
1.4k
Iniciativas independentes de divulgação científica: o caso do Movimento #CiteMulheresNegras
taisso
0
400
大規模言語モデルの開発
chokkan
PRO
84
35k
Visual Analytics for R&D Intelligence @Funding the Commons & DeSci Tokyo 2024
hayataka88
0
110
インフラだけではない MLOps の話 @事例でわかるMLOps 機械学習の成果をスケールさせる処方箋 発売記念
icoxfog417
PRO
2
620
重複排除・高速バックアップ・ランサムウェア対策 三拍子そろったExaGrid × Veeam連携セミナー
climbteam
0
140
深層学習を利用して 大豆の外部欠陥を判別した研究事例の紹介
kentaitakura
0
250
白金鉱業Meetup Vol.15 DMLによる条件付処置効果の推定_sotaroIZUMI_20240919
brainpadpr
2
590
Featured
See All Featured
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.1k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
YesSQL, Process and Tooling at Scale
rocio
169
14k
Designing on Purpose - Digital PM Summit 2013
jponch
116
7k
Speed Design
sergeychernyshev
25
670
Writing Fast Ruby
sferik
628
61k
Building Better People: How to give real-time feedback that sticks.
wjessup
365
19k
Navigating Team Friction
lara
183
15k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
17
2.3k
Faster Mobile Websites
deanohume
305
30k
Being A Developer After 40
akosma
87
590k
Transcript
REANO: Optimising Retrieval-Augmented Reader Models through Knowledge Graph Generation Jinyuan
Fang, Zaiqiao Meng, Craig Macdonald University of Glasgow 読み⼿: 松原拓磨(豊⽥⼯⼤) 図表は論⽂,[1]より [1] Izacard et al., 2021. Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering. EACL.
導⼊ • Open Domain Question Answering (ODQA) • ⼊⼒は質問,出⼒は回答 •
近年,Retrieval-Augmented Generation(RAG)が⾼い性能を発揮 ACL2024読み会@名⼤ 2 2024/9/30 Retrieval 外部知識 質問 Reader 回答 Passages
導⼊ • Open Domain Question Answering (ODQA) • ⼊⼒は質問,出⼒は回答 •
近年,Retrieval-Augmented Generation(RAG)が⾼い性能を発揮 ACL2024読み会@名⼤ 3 2024/9/30 Retrieval 外部知識 質問 Reader 回答 Passages Readerモデルに注⽬
問題提起と提案の概要 • 従来のReaderモデルではPassage間の依存を無視 ØPassegesからKGを構築することで,マルチホップな推論が可能 2024/9/30 ACL2024読み会@名⼤ 4 Fusion-in-Decoder (FiD) PassagesからKGを補完
情報が⾜りない
提案⼿法 Passageから補完したKGを活⽤したReaderモデルを提案 • KG Generator : 既存の知識にない情報を補完したKGを作成 • Answer Predictor
: 質問に関連するトリプルを選択し,回答 2024/9/30 ACL2024読み会@名⼤ 5
提案⼿法 Passageから補完したKGを活⽤したReaderモデルを提案 • KG Generator : 既存の知識にない情報を補完したKGを作成 • Answer Predictor
: 質問に関連するトリプルを選択し,回答 2024/9/30 ACL2024読み会@名⼤ 6
提案⼿法 Passageから補完したKGを活⽤したReaderモデルを提案 • KG Generator : 既存の知識にない情報を補完したKGを作成 • Answer Predictor
: 質問に関連するトリプルを選択し,回答 2024/9/30 ACL2024読み会@名⼤ 7
KG Generator 2024/9/30 ACL2024読み会@名⼤ 8 • 既存の知識にない情報を補完したKGを作成 • Intra-context RE(⽂脈内関係抽出)
• 関係抽出モデルDocuNetによりPassagesから関係トリプルを獲得 • Inter-context RE(⽂脈間関係抽出) • Wikidataから関係トリプルを獲得 • Graph Neural Network (GNN) • Entityの埋め込みを獲得
Answer Predictor 2024/9/30 ACL2024読み会@名⼤ 9 KGの埋め込み • 質問qに関連する関係トリプルを選択し,回答
実験 2024/9/30 ACL2024読み会@名⼤ 10 Multihop QA スコアはaccuracy(完全⼀致) • 5つのデータセットで評価 •
SoTA性能 • ベースラインモデル • 抽出型Reader • DPR • ⽣成型Reader • RAG-Seq, FiDO • KG強化型Reader • KG-FiD, OREOLM, GRAPE
Passagesを減らした時の影響 2024/9/30 ACL2024読み会@名⼤ 11 • nを減らしていくとnnとn50のスコアの差が開いていく • 50 passages由来の関係トリプルが有⽤な情報を提供 •
T5に⼊⼒するPassagesの減少が可能 NQ TQA n50 nn
Case Study 2024/9/30 ACL2024読み会@名⼤ 12 • 既存の知識にない関係トリプルを活⽤できている
まとめ • 既存の知識にない情報を獲得し,Passage間の依存を捉える 検索拡張Readerモデル(REANO)を提案 • Passagesから抽出した情報でKnowledge Graph (KG)を補完 • ベースラインよりも⾼い性能を発揮
• 様々な結果の解析 2024/9/30 ACL2024読み会@名⼤ 13
補⾜:KG Generator 2024/9/30 ACL2024読み会@名⼤ 14 パッセージのentityペアの埋め込み トリプルの関係の埋め込み entityの埋め込み 近傍ノードを考慮した埋め込み qに対するアテンション
• 質問に関連する関係トリプルの埋め込みを獲得 • REM (Relation Embedding Module): REのノイズを緩和 • GNN (Graph Neural Network): 質問qに関連するentityの埋め込み獲得
補⾜:学習の⼯夫 • KG generator (DocuNet)の学習 • REBELデータセットで遠距離教師あり学習 • Answer Predictor
(GNNとT5) の学習 • cq :全entityについて質問に関連する確率の分布 • cq *: 質問から答えのentityまでのパスにあるentityは関連する 2024/9/30 ACL2024読み会@名⼤ 15
補⾜:Ablation Study • w/o inter-context triples • Passage間の関係なし • w/o
intra-context triples • DocuNetなし • w/o REM • REのノイズを緩和しない • w/o GNN • マルチホップが⾒られない 2024/9/30 ACL2024読み会@名⼤ 16 • GNNの下り幅が⼤きい