Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ACL読み会2024@名大 REANO: Optimising Retrieval-Augme...
Search
Takuma Matsubara
September 29, 2024
Science
0
250
ACL読み会2024@名大 REANO: Optimising Retrieval-Augmented Reader Models through Knowledge Graph Generation
Takuma Matsubara
September 29, 2024
Tweet
Share
Other Decks in Science
See All in Science
Performance Evaluation and Ranking of Drivers in Multiple Motorsports Using Massey’s Method
konakalab
0
130
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
860
2025-06-11-ai_belgium
sofievl
1
210
白金鉱業Vol.21【初学者向け発表枠】身近な例から学ぶ数理最適化の基礎 / Learning the Basics of Mathematical Optimization Through Everyday Examples
brainpadpr
1
460
Text-to-SQLの既存の評価指標を問い直す
gotalab555
1
140
Algorithmic Aspects of Quiver Representations
tasusu
0
120
データベース08: 実体関連モデルとは?
trycycle
PRO
0
1k
Vibecoding for Product Managers
ibknadedeji
0
120
凸最適化からDC最適化まで
santana_hammer
1
340
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
130
良書紹介04_生命科学の実験デザイン
bunnchinn3
0
100
風の力で振れ幅が大きくなる振り子!? 〜タコマナローズ橋はなぜ落ちたのか〜
syotasasaki593876
1
170
Featured
See All Featured
How to build a perfect <img>
jonoalderson
0
4.6k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
How to train your dragon (web standard)
notwaldorf
97
6.4k
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
200
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
46
How STYLIGHT went responsive
nonsquared
100
6k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
60
37k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
400
How GitHub (no longer) Works
holman
316
140k
Transcript
REANO: Optimising Retrieval-Augmented Reader Models through Knowledge Graph Generation Jinyuan
Fang, Zaiqiao Meng, Craig Macdonald University of Glasgow 読み⼿: 松原拓磨(豊⽥⼯⼤) 図表は論⽂,[1]より [1] Izacard et al., 2021. Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering. EACL.
導⼊ • Open Domain Question Answering (ODQA) • ⼊⼒は質問,出⼒は回答 •
近年,Retrieval-Augmented Generation(RAG)が⾼い性能を発揮 ACL2024読み会@名⼤ 2 2024/9/30 Retrieval 外部知識 質問 Reader 回答 Passages
導⼊ • Open Domain Question Answering (ODQA) • ⼊⼒は質問,出⼒は回答 •
近年,Retrieval-Augmented Generation(RAG)が⾼い性能を発揮 ACL2024読み会@名⼤ 3 2024/9/30 Retrieval 外部知識 質問 Reader 回答 Passages Readerモデルに注⽬
問題提起と提案の概要 • 従来のReaderモデルではPassage間の依存を無視 ØPassegesからKGを構築することで,マルチホップな推論が可能 2024/9/30 ACL2024読み会@名⼤ 4 Fusion-in-Decoder (FiD) PassagesからKGを補完
情報が⾜りない
提案⼿法 Passageから補完したKGを活⽤したReaderモデルを提案 • KG Generator : 既存の知識にない情報を補完したKGを作成 • Answer Predictor
: 質問に関連するトリプルを選択し,回答 2024/9/30 ACL2024読み会@名⼤ 5
提案⼿法 Passageから補完したKGを活⽤したReaderモデルを提案 • KG Generator : 既存の知識にない情報を補完したKGを作成 • Answer Predictor
: 質問に関連するトリプルを選択し,回答 2024/9/30 ACL2024読み会@名⼤ 6
提案⼿法 Passageから補完したKGを活⽤したReaderモデルを提案 • KG Generator : 既存の知識にない情報を補完したKGを作成 • Answer Predictor
: 質問に関連するトリプルを選択し,回答 2024/9/30 ACL2024読み会@名⼤ 7
KG Generator 2024/9/30 ACL2024読み会@名⼤ 8 • 既存の知識にない情報を補完したKGを作成 • Intra-context RE(⽂脈内関係抽出)
• 関係抽出モデルDocuNetによりPassagesから関係トリプルを獲得 • Inter-context RE(⽂脈間関係抽出) • Wikidataから関係トリプルを獲得 • Graph Neural Network (GNN) • Entityの埋め込みを獲得
Answer Predictor 2024/9/30 ACL2024読み会@名⼤ 9 KGの埋め込み • 質問qに関連する関係トリプルを選択し,回答
実験 2024/9/30 ACL2024読み会@名⼤ 10 Multihop QA スコアはaccuracy(完全⼀致) • 5つのデータセットで評価 •
SoTA性能 • ベースラインモデル • 抽出型Reader • DPR • ⽣成型Reader • RAG-Seq, FiDO • KG強化型Reader • KG-FiD, OREOLM, GRAPE
Passagesを減らした時の影響 2024/9/30 ACL2024読み会@名⼤ 11 • nを減らしていくとnnとn50のスコアの差が開いていく • 50 passages由来の関係トリプルが有⽤な情報を提供 •
T5に⼊⼒するPassagesの減少が可能 NQ TQA n50 nn
Case Study 2024/9/30 ACL2024読み会@名⼤ 12 • 既存の知識にない関係トリプルを活⽤できている
まとめ • 既存の知識にない情報を獲得し,Passage間の依存を捉える 検索拡張Readerモデル(REANO)を提案 • Passagesから抽出した情報でKnowledge Graph (KG)を補完 • ベースラインよりも⾼い性能を発揮
• 様々な結果の解析 2024/9/30 ACL2024読み会@名⼤ 13
補⾜:KG Generator 2024/9/30 ACL2024読み会@名⼤ 14 パッセージのentityペアの埋め込み トリプルの関係の埋め込み entityの埋め込み 近傍ノードを考慮した埋め込み qに対するアテンション
• 質問に関連する関係トリプルの埋め込みを獲得 • REM (Relation Embedding Module): REのノイズを緩和 • GNN (Graph Neural Network): 質問qに関連するentityの埋め込み獲得
補⾜:学習の⼯夫 • KG generator (DocuNet)の学習 • REBELデータセットで遠距離教師あり学習 • Answer Predictor
(GNNとT5) の学習 • cq :全entityについて質問に関連する確率の分布 • cq *: 質問から答えのentityまでのパスにあるentityは関連する 2024/9/30 ACL2024読み会@名⼤ 15
補⾜:Ablation Study • w/o inter-context triples • Passage間の関係なし • w/o
intra-context triples • DocuNetなし • w/o REM • REのノイズを緩和しない • w/o GNN • マルチホップが⾒られない 2024/9/30 ACL2024読み会@名⼤ 16 • GNNの下り幅が⼤きい