Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
エッジ検出を用いた小ねぎ分岐部の検出
Search
Takuto ANDO
January 11, 2025
Research
0
96
エッジ検出を用いた小ねぎ分岐部の検出
Takuto ANDO
January 11, 2025
Tweet
Share
More Decks by Takuto ANDO
See All by Takuto ANDO
A Detailed Analysis of LLM Execution on IMAX3 and Initial Evaluation of IMAX4 Prototype for Server Environment
takuto_andtt
0
40
DPUを用いたマルチタスクDNN表情認識システムのFPGA実装
takuto_andtt
0
520
Facial Expression Recognition System Using DNN Accelerator with Multi-threading on FPGA
takuto_andtt
0
36
小ねぎ調製位置検出のためのインスタンスセグメンテーション
takuto_andtt
0
500
Other Decks in Research
See All in Research
Proposal of an Information Delivery Method for Electronic Paper Signage Using Human Mobility as the Communication Medium / ICCE-Asia 2025
yumulab
0
110
説明可能な機械学習と数理最適化
kelicht
2
810
Remote sensing × Multi-modal meta survey
satai
4
670
Thirty Years of Progress in Speech Synthesis: A Personal Perspective on the Past, Present, and Future
ktokuda
0
140
ForestCast: Forecasting Deforestation Risk at Scale with Deep Learning
satai
2
210
超高速データサイエンス
matsui_528
1
340
20年前に50代だった人たちの今
hysmrk
0
110
EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
satai
3
550
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
460
Open Gateway 5GC利用への期待と不安
stellarcraft
2
170
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
340
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
430
Featured
See All Featured
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
0
1k
sira's awesome portfolio website redesign presentation
elsirapls
0
110
Test your architecture with Archunit
thirion
1
2.1k
A Soul's Torment
seathinner
2
2.1k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
AI: The stuff that nobody shows you
jnunemaker
PRO
1
160
Accessibility Awareness
sabderemane
0
31
Amusing Abliteration
ianozsvald
0
84
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
360
Color Theory Basics | Prateek | Gurzu
gurzu
0
170
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
100
Transcript
エッジ検出を用いた こねぎ分岐部の抽出 井上研究室 情報工学科 5年 5番 安藤拓翔
1. 背景と目的 • 現行のこねぎの皮むき機は精度が低い • 皮むき機で取り除けなかった葉は人手で除去 → 多大な人件費を要する 本研究の背景 現行の皮むき機
1/23
1. 背景と目的 こねぎの皮むき ノズル • ノズルによる高水圧・エアーで不要な葉を除去 • 最上部の分岐部の直下に最上部のノズルを配置 イメージ図 上部
下部 2/23
1. 背景と目的 こねぎ外葉における最上位分岐部位置の検出手法を検討し, その有効性を検証すること. 本研究の目的 3/23
2.仮説と分岐部の検出手法 • 外葉における分岐部には特有の斜線のような繊維が存在 • 分岐部斜線を抽出することで分岐部位置を検出可能と仮定 仮説:分岐部斜線の抽出で分岐部検出可能 分岐部斜線 エッジ検出を用いた 分岐部斜線検出システムを開発 4/23
3.関連研究 • コンクリート壁面のひび割れを抽出 • エッジ情報(連結情報)を用いた検出アルゴリズムを提案 関連研究:エッジ検出によるひび割れ抽出[1] [1]石川 裕治, 布留川 信悟,
宮崎 早苗, "デジタルカメラ画像からの不規則線分抽 出手法の一検討,第67回全国大会講演論文集, pp.27-28, 2005. 原画像 ひび割れ二値化画像 5/23
3.関連研究 • こねぎ実画像はコンクリート壁面よりノイズ要因が多い • 分岐部斜線はひび割れより輝度差が小さい 本研究の立ち位置 こねぎ分岐部斜線に対して 耐ノイズ性能と抽出精度が高い検出アルゴリズムを考案 本手法では 分岐部斜線
6/23
4. 分岐部斜線抽出システム 1 マスク処理と分岐部位置推定領域の抽出 2 Sobelフィルタによるエッジ検出 3 エッジ特徴量によるノイズと分岐部斜線の分類 システムのアルゴリズム 4
最上部エッジの出力 7/23
4. 分岐部斜線抽出システム 1.マスク処理と分岐部位置推定領域の抽出 • エッジ検出時にノイズ要因になる領域を除去 • 壁面の汚れ,葉の輪郭,葉の表面の傷など 壁面の汚れ 葉の輪郭 葉の表面の傷
8/23
4. 分岐部斜線抽出システム 1.マスク処理と分岐部位置推定領域の抽出 • 壁面の汚れ 根 葉の表面の傷 緑色領域抽出マスク • 葉の輪郭
葉の輪郭マスク 緑色領域抽出 葉の輪郭 入力画像 マスク適応後画像 マスク処理 ⇒ ⇒ 9/23
4. 分岐部斜線抽出システム 1.マスク処理と分岐部位置推定領域の抽出 • 最上部分岐部の位置は個体によって大差ない • 最上部分岐部が位置する可能性がある領域を抽出 分岐部は無いと推定 10/23
4. 分岐部斜線抽出システム 2. Sobelフィルタによるエッジ検出 • 縦方向のSobelフィルタを適応(縦方向の微分フィルタ) 縦方向のみ 検出対象 横方向の輝度差が小さな分岐部斜線の検出に対して頑健 検出して二値化
11/23
4. 分岐部斜線抽出システム • エッジ分類のためラベリングを実施 ラベリング処理(8連結) 3.エッジ特徴量によるノイズと分岐部斜線の分類 12/23
①面積 ②周囲長 ③エッジの角度 4. 分岐部斜線抽出システム • ラベル付けされた各エッジの特徴量を抽出 • 各エッジの2次元座標データから抽出 分岐部斜線エッジと
ノイズエッジの分類に用いる エッジ特徴量 3.エッジ特徴量によるノイズと分岐部斜線の分類 13/23
4. 分岐部斜線抽出システム エッジ特徴量による分類と除去 ➢ 面積と周囲長 • 分岐部斜線は一定の周囲長と面積 • 閾値を設定してノイズエッジを除去 30px
< 面積 < 300px かつ 30px < 周囲長 か? エッジ ノイズとして除去 No 分類条件 Yesであれば残す 3.エッジ特徴量によるノイズと分岐部斜線の分類 14/23
4. 分岐部斜線抽出システム エッジ特徴量による分類と除去 ➢ エッジの角度 • 繊維斜線(ノイズ)は形状が分岐部斜線と類似 • 大半の繊維斜線はエッジの角度で区別可能 面積と周囲長でのノイズ除去後
角度の例 3.エッジ特徴量によるノイズと分岐部斜線の分類 繊維斜線(ノイズ) 分岐部斜線 15/23
4. 分岐部斜線抽出システム エッジ特徴量による分類と除去 ➢ エッジの角度 35° < 角度 < 75°
か? エッジ ノイズとして除去 No 分類条件 Yesであれば 分岐部斜線として出力 • 35°未満の分岐部斜線は希少 • 75°以上の分岐部斜線は縦方向のSobelフィルタで検出困難 3.エッジ特徴量によるノイズと分岐部斜線の分類 16/23
4. 分岐部斜線抽出システム 4.最上部エッジの位置出力 • ノイズ除去後に残るエッジは分岐部斜線 • 最上部のエッジを出力 最上部のエッジ 17/23
5. 実験と結果 実験目的 分岐部斜線検出における本手法の有効性の評価 18/23
4. 実験と結果 実験方法 • こねぎ175本に対して実施 • 最上部のエッジの位置と事前に目測で入力した 分岐部の位置(正解位置)との誤差を出力 • 誤差1.0cm未満であれば検出成功
上下誤差 1.0cm 正解位置 19/23
4. 実験と結果 結果 • 検出成功率 92% • 本手法の分岐部斜線検出に対する有効性が示された 20/23
4. 実験と結果 分類処理の効果 • 分類処理(ノイズ除去)なしでの精度は30%程度 • エッジ特徴量を組み合わせると精度向上 分類項目 割合 分類処理なし
28% 面積 68% 周囲長 71% 面積と周囲長 84% 面積と周囲長とエッジの角度(本手法) 92% 21/23
4. 実験と結果 検出失敗例 • 分岐部斜線が外葉に隠れていると検出不可 • 分岐部斜線が葉の表面と輝度差が小さい(薄い)と検出困難 葉に分岐部斜線が隠れている 22/23
5. まとめ • エッジ検出とエッジ特徴量による分類を用いた アルゴリズムを提案 • 面積,周囲長,エッジの角度が分岐部斜線の 特徴量として有効 • 分岐部斜線検出の手法として有効性を示すことができた
今後の課題 アルゴリズム見直しによる分岐部斜線検出の精度の向上 23/23