Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AtCoder AGC 001 B - Mysterious Light 考察と実装
Search
task4233
February 07, 2019
Programming
0
510
AtCoder AGC 001 B - Mysterious Light 考察と実装
AGC001-B Mysterious LightのEditorialの理解の足しになるように, という思いで作成しました.
task4233
February 07, 2019
Tweet
Share
More Decks by task4233
See All by task4233
pprof vs runtime/trace (FlightRecorder)
task4233
0
200
embedパッケージを深掘りする / Deep Dive into embed Package in Go
task4233
2
500
GC24 Recap: Interface Internals
task4233
1
720
GopherCon 2024 Recap: Exploring the Go Compiler: Adding a "four" loop / 構文追加で学ぶGoコンパイラの処理
task4233
0
710
Goのデバッグ用ロガーの開発を通して得た デバッグとgoパッケージに関する知見/Knowledge by given implementation of logger for debug
task4233
0
560
入門XSS / Introduction of XSS
task4233
3
2.8k
脆弱性スキャナのOWASP ZAPを コードベースで扱ってみる / OWASP ZAP on a code base
task4233
2
3.2k
誘導を読み取って1ステップ上の問題を解けるようになろう/Tips for Solving CTF with Reading Leads
task4233
1
940
JavaScriptはなぜシングルスレッドでも非同期処理ができるのか/Why Can JavaSctipt Invoke Asynchronous in Single Thread?
task4233
24
22k
Other Decks in Programming
See All in Programming
いま中途半端なSwift 6対応をするより、Default ActorやApproachable Concurrencyを有効にしてからでいいんじゃない?
yimajo
2
430
20251016_Rails News ~Rails 8.1の足音を聴く~
morimorihoge
1
380
アメ車でサンノゼを走ってきたよ!
s_shimotori
0
230
Claude Agent SDK を使ってみよう
hyshu
0
850
Software Architecture
hschwentner
6
2.3k
Server Side Kotlin Meetup vol.16: 内部動作を理解して ハイパフォーマンスなサーバサイド Kotlin アプリケーションを書こう
ternbusty
3
200
大規模アプリのDIフレームワーク刷新戦略 ~過去最大規模の並行開発を止めずにアプリ全体に導入するまで~
mot_techtalk
1
450
なぜあの開発者はDevRelに伴走し続けるのか / Why Does That Developer Keep Running Alongside DevRel?
nrslib
3
410
TFLintカスタムプラグインで始める Terraformコード品質管理
bells17
2
190
iOSエンジニア向けの英語学習アプリを作る!
yukawashouhei
0
190
ソフトウェア設計の実践的な考え方
masuda220
PRO
4
590
その面倒な作業、「Dart」にやらせませんか? Flutter開発者のための業務効率化
yordgenome03
1
130
Featured
See All Featured
Keith and Marios Guide to Fast Websites
keithpitt
411
23k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
8
910
4 Signs Your Business is Dying
shpigford
185
22k
Six Lessons from altMBA
skipperchong
29
4k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
20
1.2k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
It's Worth the Effort
3n
187
28k
RailsConf 2023
tenderlove
30
1.2k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
870
Navigating Team Friction
lara
190
15k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
Transcript
AGC001-B 考察と実装 @task4233
もくじ 1. 概要 2. 考察 3. 実装 4. まとめ 2
1. 概要 ・1辺の長さがNの正三角形abcがある. ・不思議な光は, 自分の軌跡と辺に当たったときに反射する. ・頂点aからXだけ離れた点から辺bcと平行な光を放った時, もう一度その点に戻ってくるまでの軌跡の和を求めよ. 3
2. 考察 問題がよくわからないので, 問題に与えられた図を用いて一般化してみる. 4
N, Xについて一般化(図はN=5, X=2の時のもの) X N X 5
N, Xについて一般化(図はN=5, X=2の時のもの) X N N-X X 6
N, Xについて一般化(図はN=5, X=2の時のもの) X N N-X X X 7
N, Xについて一般化(図はN=5, X=2の時のもの) X X N-X X 8
N, Xについて一般化(図はN=5, X=2の時のもの) (N-X)-X N-X X 9
N, Xについて一般化(図はN=5, X=2の時のもの) (N-X)-X N-X X (N-X)-X 10
N, Xについて一般化(図はN=5, X=2の時のもの) (N-X)-X (N-X)-X (N-X)-X 11
N, Xについて一般化 先ほどまでの図で反射した光に周期性があったことが分かるは ず. その周期性とは以下の3つ. 1. 2回反射した後の領域に, 平行四辺形が出現すること 2. N,
N-Xの後の反射において, 2回ずつ同じ距離を進むこと 3. 出来た平行四辺形の辺が等しい時に, 反射が終わること それぞれ見ていく. 12
2-1. 平行四辺形の出現 右下の図は6枚目のスライドの図である. ここで, 光が2回進むと平行四辺形ができることが分かる. なお, その辺の長さは 前の2つの光の軌跡の距離と一致する. (右の図で言えば, XとN-Xになる)
X N N-X X 13
2-2. 同じ距離の軌跡 右下の図は8枚目のスライドの図である ここで, X->N-Xの軌跡の後に, X->Xのように同じ距離だけ進んでいることが分かるはず. なお, その距離は2-1.で説明した 平行四辺形の辺の最小値である. X
X N-X X 14
2.3. 反射の終了 右下の図は11枚目のスライドの図である ここで, 反射が終了する時, 平行四辺形の2辺が等しく なっていることが分かるはず. ((N-X)-X = (N-X)-Xで等しい)
(N-X)-X (N-X)-X (N-X)-X 15
3. 実装 2.での考察により, 以下のような再帰が書ける. 出来る平行四辺形の2辺をx, y(x < y)とすると, と書ける. 16
3. 実装(C++) 実装すると右のようになる. ※int64_tはlong longでも問題ない しかし, これは制約が なのでTLEになる. そこで, 再帰を簡潔にする.
17
3. 実装 - 高速化(1) 再帰関数をじーっと見ていると, return f(mn, mx-mn) + 2
* mn の部分が無駄に見えてくる. (なぜなら, mx-mnというパラメータの関数を呼び出す度に2*mnを 加算するので, その加算をまとめて[mx/mn]* 2 *mnとすればまと められるから) ※[ ]はガウス記号. 18
3. 実装 - 高速化(2) すると, 先ほどの再帰は以下のように書き直せるはず. なお, y%x=0の式で最後にxを引いているのは, 再帰の終了時に光が平行四辺形の半分だけ進むため. 19
3. 実装 - 高速化(C++) 改めて実装すると 右のようになる. これで通る. 20
4. まとめ ・今回のように, なんとなく再帰らしいことは分かるが, その実装が上手く行かない時は, 実際に図に書き出すと 意外とうまく行くこともある. ・今回の高速化で用いたような, 減算を除算(加算を乗算)でするテクは便利なので, 使えるようになっておくと良いと思う.
21
以上. お疲れ様でした.