$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AtCoder AGC 001 B - Mysterious Light 考察と実装
Search
task4233
February 07, 2019
Programming
0
540
AtCoder AGC 001 B - Mysterious Light 考察と実装
AGC001-B Mysterious LightのEditorialの理解の足しになるように, という思いで作成しました.
task4233
February 07, 2019
Tweet
Share
More Decks by task4233
See All by task4233
pprof vs runtime/trace (FlightRecorder)
task4233
0
280
embedパッケージを深掘りする / Deep Dive into embed Package in Go
task4233
2
560
GC24 Recap: Interface Internals
task4233
1
730
GopherCon 2024 Recap: Exploring the Go Compiler: Adding a "four" loop / 構文追加で学ぶGoコンパイラの処理
task4233
0
720
Goのデバッグ用ロガーの開発を通して得た デバッグとgoパッケージに関する知見/Knowledge by given implementation of logger for debug
task4233
0
580
入門XSS / Introduction of XSS
task4233
3
2.9k
脆弱性スキャナのOWASP ZAPを コードベースで扱ってみる / OWASP ZAP on a code base
task4233
2
3.2k
誘導を読み取って1ステップ上の問題を解けるようになろう/Tips for Solving CTF with Reading Leads
task4233
1
960
JavaScriptはなぜシングルスレッドでも非同期処理ができるのか/Why Can JavaSctipt Invoke Asynchronous in Single Thread?
task4233
24
22k
Other Decks in Programming
See All in Programming
Giselleで作るAI QAアシスタント 〜 Pull Requestレビューに継続的QAを
codenote
0
190
Cap'n Webについて
yusukebe
0
130
Why Kotlin? 電子カルテを Kotlin で開発する理由 / Why Kotlin? at Henry
agatan
2
7.3k
Go コードベースの構成と AI コンテキスト定義
andpad
0
130
Flutter On-device AI로 완성하는 오프라인 앱, 박제창 @DevFest INCHEON 2025
itsmedreamwalker
1
110
AtCoder Conference 2025「LLM時代のAHC」
imjk
2
490
大体よく分かるscala.collection.immutable.HashMap ~ Compressed Hash-Array Mapped Prefix-tree (CHAMP) ~
matsu_chara
2
220
ViewファーストなRailsアプリ開発のたのしさ
sugiwe
0
470
堅牢なフロントエンドテスト基盤を構築するために行った取り組み
shogo4131
8
2.4k
実は歴史的なアップデートだと思う AWS Interconnect - multicloud
maroon1st
0
170
React Native New Architecture 移行実践報告
taminif
1
160
C-Shared Buildで突破するAI Agent バックテストの壁
po3rin
0
390
Featured
See All Featured
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Bash Introduction
62gerente
615
210k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1.3k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
A Tale of Four Properties
chriscoyier
162
23k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
RailsConf 2023
tenderlove
30
1.3k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
It's Worth the Effort
3n
187
29k
Transcript
AGC001-B 考察と実装 @task4233
もくじ 1. 概要 2. 考察 3. 実装 4. まとめ 2
1. 概要 ・1辺の長さがNの正三角形abcがある. ・不思議な光は, 自分の軌跡と辺に当たったときに反射する. ・頂点aからXだけ離れた点から辺bcと平行な光を放った時, もう一度その点に戻ってくるまでの軌跡の和を求めよ. 3
2. 考察 問題がよくわからないので, 問題に与えられた図を用いて一般化してみる. 4
N, Xについて一般化(図はN=5, X=2の時のもの) X N X 5
N, Xについて一般化(図はN=5, X=2の時のもの) X N N-X X 6
N, Xについて一般化(図はN=5, X=2の時のもの) X N N-X X X 7
N, Xについて一般化(図はN=5, X=2の時のもの) X X N-X X 8
N, Xについて一般化(図はN=5, X=2の時のもの) (N-X)-X N-X X 9
N, Xについて一般化(図はN=5, X=2の時のもの) (N-X)-X N-X X (N-X)-X 10
N, Xについて一般化(図はN=5, X=2の時のもの) (N-X)-X (N-X)-X (N-X)-X 11
N, Xについて一般化 先ほどまでの図で反射した光に周期性があったことが分かるは ず. その周期性とは以下の3つ. 1. 2回反射した後の領域に, 平行四辺形が出現すること 2. N,
N-Xの後の反射において, 2回ずつ同じ距離を進むこと 3. 出来た平行四辺形の辺が等しい時に, 反射が終わること それぞれ見ていく. 12
2-1. 平行四辺形の出現 右下の図は6枚目のスライドの図である. ここで, 光が2回進むと平行四辺形ができることが分かる. なお, その辺の長さは 前の2つの光の軌跡の距離と一致する. (右の図で言えば, XとN-Xになる)
X N N-X X 13
2-2. 同じ距離の軌跡 右下の図は8枚目のスライドの図である ここで, X->N-Xの軌跡の後に, X->Xのように同じ距離だけ進んでいることが分かるはず. なお, その距離は2-1.で説明した 平行四辺形の辺の最小値である. X
X N-X X 14
2.3. 反射の終了 右下の図は11枚目のスライドの図である ここで, 反射が終了する時, 平行四辺形の2辺が等しく なっていることが分かるはず. ((N-X)-X = (N-X)-Xで等しい)
(N-X)-X (N-X)-X (N-X)-X 15
3. 実装 2.での考察により, 以下のような再帰が書ける. 出来る平行四辺形の2辺をx, y(x < y)とすると, と書ける. 16
3. 実装(C++) 実装すると右のようになる. ※int64_tはlong longでも問題ない しかし, これは制約が なのでTLEになる. そこで, 再帰を簡潔にする.
17
3. 実装 - 高速化(1) 再帰関数をじーっと見ていると, return f(mn, mx-mn) + 2
* mn の部分が無駄に見えてくる. (なぜなら, mx-mnというパラメータの関数を呼び出す度に2*mnを 加算するので, その加算をまとめて[mx/mn]* 2 *mnとすればまと められるから) ※[ ]はガウス記号. 18
3. 実装 - 高速化(2) すると, 先ほどの再帰は以下のように書き直せるはず. なお, y%x=0の式で最後にxを引いているのは, 再帰の終了時に光が平行四辺形の半分だけ進むため. 19
3. 実装 - 高速化(C++) 改めて実装すると 右のようになる. これで通る. 20
4. まとめ ・今回のように, なんとなく再帰らしいことは分かるが, その実装が上手く行かない時は, 実際に図に書き出すと 意外とうまく行くこともある. ・今回の高速化で用いたような, 減算を除算(加算を乗算)でするテクは便利なので, 使えるようになっておくと良いと思う.
21
以上. お疲れ様でした.