Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Google Colaboratory でStable Diffusionの実装 / Impl...
Search
tasotaku
October 29, 2022
Programming
0
420
Google Colaboratory でStable Diffusionの実装 / Implementation of Stable Diffusion at Google Colaboratory
Google Colaboratory でStable Diffusionを実装しました。少し遊んでみたのと、構造も少し調べました。
tasotaku
October 29, 2022
Tweet
Share
More Decks by tasotaku
See All by tasotaku
duel_masters_RAG
tasotaku
0
67
DQNによるポーカーの強化学習/Reinforcement Learning in Poker with DQN
tasotaku
0
810
オセロCPU/Othello CPU
tasotaku
0
170
オセロAI / OthelloAI
tasotaku
0
190
私、ChatGPTがChatGPTを解説するよ! / ChatGPT explains ChatGPT
tasotaku
0
490
機械学習入門
tasotaku
0
450
AIが作る予想外な画像を考える / Consider the unexpected images that AI creates
tasotaku
0
340
Other Decks in Programming
See All in Programming
CSC307 Lecture 07
javiergs
PRO
0
540
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
16
5.9k
Implementation Patterns
denyspoltorak
0
280
Data-Centric Kaggle
isax1015
2
750
余白を設計しフロントエンド開発を 加速させる
tsukuha
7
2.1k
AI時代の認知負荷との向き合い方
optfit
0
130
CSC307 Lecture 06
javiergs
PRO
0
680
humanlayerのブログから学ぶ、良いCLAUDE.mdの書き方
tsukamoto1783
0
180
Smart Handoff/Pickup ガイド - Claude Code セッション管理
yukiigarashi
0
110
AIによる高速開発をどう制御するか? ガードレール設置で開発速度と品質を両立させたチームの事例
tonkotsuboy_com
2
620
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
440
Honoを使ったリモートMCPサーバでAIツールとの連携を加速させる!
tosuri13
1
170
Featured
See All Featured
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
62
Faster Mobile Websites
deanohume
310
31k
The Mindset for Success: Future Career Progression
greggifford
PRO
0
230
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.6k
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
120
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
310
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
60
Transcript
Google Colaboratory で Stable Diffusionの実装 B2 tasotaku
もくじ ◼ Stable Diffusion とは ◼ Stable Diffusion の特徴 ◼
Diffusers ◼ Stable Diffusion の中身
Stable Diffusion とは ◼ Stable Diffusion とは、文章から画像を生成するAI ◼ Google Colaboratory
での実装方法はこちら ◼ できること ⚫ 文章から画像を生成 ⚫ 生成した画像を微調整する ⚫ 文章と画像から新たな画像を生成 ⚫ etc
Stable Diffusion の特徴 ◼ 解像度の高い画像を生成できる ◼ メモリや時間がかからない ⚫ ノートパソコンでも Google
Colaboratory で実行可能 ◼ 特定のジャンルに弱い ⚫ 学習に使ったデータセットに起因? ⚫ ファインチューニングすれば解決 ◼ 作成した画像はフリー画像
文章から画像を生成 a photograph of an astronaut riding a horse
画像と文章から画像を生成 Gold desk +
画像とマスク画像と文章から画像を生成 ◼ マスク画像を使うことで、部分的に調整が可能 robot
ファインチューニング ◼ 特定の画像で訓練することで、苦手な分野に対応する ファインチューニング前 ファインチューニング後
Diffusers ◼ Diffusers とは、段階的にノイズ除去するように訓練された機械学習システム ◼ Stable Diffusion はこれをベースに作られている 引用: https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb
Stable Diffusion の中身 ◼ Latents ◼ A text-encoder ◼ A
U-Net ◼ Scheduler ◼ An autoencoder (VAE) 引用: https://huggingface.co/blog/stable_diffusion
Stable Diffusion の中身 ◼ Latents ◼ A text-encoder ◼ A
U-Net ◼ Scheduler ◼ An autoencoder (VAE) 引用: https://huggingface.co/blog/stable_diffusion
Latents ◼ seed値をもとにノイズ画像を作る ◼ その画像を U-Net が扱えるように、 画素行列(latents)に変換 ◼ 出力する画像は
512 × 512 なのに対して、 latents はより低次元である ◼ こうすることで、メモリと計算量を軽減している 引用: https://huggingface.co/blog/stable_diffusion
text-encoder ◼ 文章をU-Netが理解できるかたちに変換する ◼ 機械翻訳ではないので、文法はあまり見ない ⚫単語(キーワード)を複数与えるだけでも機能する 引用: https://huggingface.co/blog/stable_diffusion
U-Net と Scheduler ◼ U-Net を用いて、文章をもとにノイズ画像を ノイズの少ない画像にする ◼ Scheduler で二つの画像のノイズの差を
計算してフィードバック ◼ これを繰り返して画像(のlatents) を生成する ◼ U-Net は ResNet からなるエンコーダーと デコーダーをもつ ◼ Scheduler は複数種類があり、選ぶことができる 引用: https://huggingface.co/blog/stable_diffusion
autoencoder (VAE) ◼ U-Net で生成した latents を、画像に 復号(decode)して画像を出力する ◼ VAE
はエンコーダー(encoder)と デコーダー(decoder)の二つの部分からなる ◼ 画像生成ではデコーダーしか使わないが、 訓練する時にエンコーダーも使う 引用: https://huggingface.co/blog/stable_diffusion
学習 ◼ 元の画像にノイズをかける ◼ 文章を加えてノイズを取り除く ◼ 出力と元の画像、文章から損失を計算する 文章 比較
最後に ◼ 扱いやすさを重視したお絵描きAI ◼ フリー画像の新たな選択肢 ◼ すでに Stable Diffusion を利用したアプリなどが登場している
◼ Diffusers は用途が多く、音声や動画バージョンも作成予定らしい
参考 ◼ https://github.com/huggingface/diffusers ◼ https://colab.research.google.com/github/huggingface/noteb ooks/blob/main/diffusers/stable_diffusion.ipynb