Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Google Colaboratory でStable Diffusionの実装 / Impl...
Search
tasotaku
October 29, 2022
Programming
0
410
Google Colaboratory でStable Diffusionの実装 / Implementation of Stable Diffusion at Google Colaboratory
Google Colaboratory でStable Diffusionを実装しました。少し遊んでみたのと、構造も少し調べました。
tasotaku
October 29, 2022
Tweet
Share
More Decks by tasotaku
See All by tasotaku
duel_masters_RAG
tasotaku
0
63
DQNによるポーカーの強化学習/Reinforcement Learning in Poker with DQN
tasotaku
0
800
オセロCPU/Othello CPU
tasotaku
0
160
オセロAI / OthelloAI
tasotaku
0
180
私、ChatGPTがChatGPTを解説するよ! / ChatGPT explains ChatGPT
tasotaku
0
480
機械学習入門
tasotaku
0
450
AIが作る予想外な画像を考える / Consider the unexpected images that AI creates
tasotaku
0
330
Other Decks in Programming
See All in Programming
Python札幌 LT資料
t3tra
7
1.1k
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
590
まだ間に合う!Claude Code元年をふりかえる
nogu66
5
920
LLMで複雑な検索条件アセットから脱却する!! 生成的検索インタフェースの設計論
po3rin
4
1.1k
AI Agent Dojo #4: watsonx Orchestrate ADK体験
oniak3ibm
PRO
0
120
TestingOsaka6_Ozono
o3
0
260
SQL Server 2025 LT
odashinsuke
0
120
Rubyで鍛える仕組み化プロヂュース力
muryoimpl
0
310
JETLS.jl ─ A New Language Server for Julia
abap34
2
470
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
610
公共交通オープンデータ × モバイルUX 複雑な運行情報を 『直感』に変換する技術
tinykitten
PRO
0
180
組み合わせ爆発にのまれない - 責務分割 x テスト
halhorn
1
180
Featured
See All Featured
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
54
48k
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
180
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
58
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
0
37
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
65
35k
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
74
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
0
220
Joys of Absence: A Defence of Solitary Play
codingconduct
1
260
Transcript
Google Colaboratory で Stable Diffusionの実装 B2 tasotaku
もくじ ◼ Stable Diffusion とは ◼ Stable Diffusion の特徴 ◼
Diffusers ◼ Stable Diffusion の中身
Stable Diffusion とは ◼ Stable Diffusion とは、文章から画像を生成するAI ◼ Google Colaboratory
での実装方法はこちら ◼ できること ⚫ 文章から画像を生成 ⚫ 生成した画像を微調整する ⚫ 文章と画像から新たな画像を生成 ⚫ etc
Stable Diffusion の特徴 ◼ 解像度の高い画像を生成できる ◼ メモリや時間がかからない ⚫ ノートパソコンでも Google
Colaboratory で実行可能 ◼ 特定のジャンルに弱い ⚫ 学習に使ったデータセットに起因? ⚫ ファインチューニングすれば解決 ◼ 作成した画像はフリー画像
文章から画像を生成 a photograph of an astronaut riding a horse
画像と文章から画像を生成 Gold desk +
画像とマスク画像と文章から画像を生成 ◼ マスク画像を使うことで、部分的に調整が可能 robot
ファインチューニング ◼ 特定の画像で訓練することで、苦手な分野に対応する ファインチューニング前 ファインチューニング後
Diffusers ◼ Diffusers とは、段階的にノイズ除去するように訓練された機械学習システム ◼ Stable Diffusion はこれをベースに作られている 引用: https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb
Stable Diffusion の中身 ◼ Latents ◼ A text-encoder ◼ A
U-Net ◼ Scheduler ◼ An autoencoder (VAE) 引用: https://huggingface.co/blog/stable_diffusion
Stable Diffusion の中身 ◼ Latents ◼ A text-encoder ◼ A
U-Net ◼ Scheduler ◼ An autoencoder (VAE) 引用: https://huggingface.co/blog/stable_diffusion
Latents ◼ seed値をもとにノイズ画像を作る ◼ その画像を U-Net が扱えるように、 画素行列(latents)に変換 ◼ 出力する画像は
512 × 512 なのに対して、 latents はより低次元である ◼ こうすることで、メモリと計算量を軽減している 引用: https://huggingface.co/blog/stable_diffusion
text-encoder ◼ 文章をU-Netが理解できるかたちに変換する ◼ 機械翻訳ではないので、文法はあまり見ない ⚫単語(キーワード)を複数与えるだけでも機能する 引用: https://huggingface.co/blog/stable_diffusion
U-Net と Scheduler ◼ U-Net を用いて、文章をもとにノイズ画像を ノイズの少ない画像にする ◼ Scheduler で二つの画像のノイズの差を
計算してフィードバック ◼ これを繰り返して画像(のlatents) を生成する ◼ U-Net は ResNet からなるエンコーダーと デコーダーをもつ ◼ Scheduler は複数種類があり、選ぶことができる 引用: https://huggingface.co/blog/stable_diffusion
autoencoder (VAE) ◼ U-Net で生成した latents を、画像に 復号(decode)して画像を出力する ◼ VAE
はエンコーダー(encoder)と デコーダー(decoder)の二つの部分からなる ◼ 画像生成ではデコーダーしか使わないが、 訓練する時にエンコーダーも使う 引用: https://huggingface.co/blog/stable_diffusion
学習 ◼ 元の画像にノイズをかける ◼ 文章を加えてノイズを取り除く ◼ 出力と元の画像、文章から損失を計算する 文章 比較
最後に ◼ 扱いやすさを重視したお絵描きAI ◼ フリー画像の新たな選択肢 ◼ すでに Stable Diffusion を利用したアプリなどが登場している
◼ Diffusers は用途が多く、音声や動画バージョンも作成予定らしい
参考 ◼ https://github.com/huggingface/diffusers ◼ https://colab.research.google.com/github/huggingface/noteb ooks/blob/main/diffusers/stable_diffusion.ipynb