Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Google Colaboratory でStable Diffusionの実装 / Impl...
Search
tasotaku
October 29, 2022
Programming
0
380
Google Colaboratory でStable Diffusionの実装 / Implementation of Stable Diffusion at Google Colaboratory
Google Colaboratory でStable Diffusionを実装しました。少し遊んでみたのと、構造も少し調べました。
tasotaku
October 29, 2022
Tweet
Share
More Decks by tasotaku
See All by tasotaku
duel_masters_RAG
tasotaku
0
6
DQNによるポーカーの強化学習/Reinforcement Learning in Poker with DQN
tasotaku
0
770
オセロCPU/Othello CPU
tasotaku
0
140
オセロAI / OthelloAI
tasotaku
0
160
私、ChatGPTがChatGPTを解説するよ! / ChatGPT explains ChatGPT
tasotaku
0
450
機械学習入門
tasotaku
0
430
AIが作る予想外な画像を考える / Consider the unexpected images that AI creates
tasotaku
0
320
Other Decks in Programming
See All in Programming
デミカツ切り抜きで面倒くさいことはPythonにやらせよう
aokswork3
0
210
XP, Testing and ninja testing ZOZ5
m_seki
3
350
(Extension DC 2025) Actor境界を越える技術
teamhimeh
1
240
Playwrightはどのようにクロスブラウザをサポートしているのか
yotahada3
7
2.3k
猫と暮らすネットワークカメラ生活🐈 ~Vision frameworkでペットを愛でよう~ / iOSDC Japan 2025
yutailang0119
0
220
Things You Thought You Didn’t Need To Care About That Have a Big Impact On Your Job
hollycummins
0
170
LLMとPlaywright/reg-suitを活用した jQueryリファクタリングの実際
kinocoboy2
4
670
大規模アプリのDIフレームワーク刷新戦略 ~過去最大規模の並行開発を止めずにアプリ全体に導入するまで~
mot_techtalk
0
400
Your Perfect Project Setup for Angular @BASTA! 2025 in Mainz
manfredsteyer
PRO
0
140
タスクの特性や不確実性に応じた最適な作業スタイルの選択(ペアプロ・モブプロ・ソロプロ)と実践 / Optimal Work Style Selection: Pair, Mob, or Solo Programming.
honyanya
3
140
monorepo の Go テストをはやくした〜い!~最小の依存解決への道のり~ / faster-testing-of-monorepos
convto
2
420
Cloudflare AgentsとAI SDKでAIエージェントを作ってみた
briete
0
130
Featured
See All Featured
Code Reviewing Like a Champion
maltzj
525
40k
Unsuck your backbone
ammeep
671
58k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
Faster Mobile Websites
deanohume
310
31k
The Straight Up "How To Draw Better" Workshop
denniskardys
237
140k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
A Tale of Four Properties
chriscoyier
160
23k
Making the Leap to Tech Lead
cromwellryan
135
9.5k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
45
2.5k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
Speed Design
sergeychernyshev
32
1.1k
Transcript
Google Colaboratory で Stable Diffusionの実装 B2 tasotaku
もくじ ◼ Stable Diffusion とは ◼ Stable Diffusion の特徴 ◼
Diffusers ◼ Stable Diffusion の中身
Stable Diffusion とは ◼ Stable Diffusion とは、文章から画像を生成するAI ◼ Google Colaboratory
での実装方法はこちら ◼ できること ⚫ 文章から画像を生成 ⚫ 生成した画像を微調整する ⚫ 文章と画像から新たな画像を生成 ⚫ etc
Stable Diffusion の特徴 ◼ 解像度の高い画像を生成できる ◼ メモリや時間がかからない ⚫ ノートパソコンでも Google
Colaboratory で実行可能 ◼ 特定のジャンルに弱い ⚫ 学習に使ったデータセットに起因? ⚫ ファインチューニングすれば解決 ◼ 作成した画像はフリー画像
文章から画像を生成 a photograph of an astronaut riding a horse
画像と文章から画像を生成 Gold desk +
画像とマスク画像と文章から画像を生成 ◼ マスク画像を使うことで、部分的に調整が可能 robot
ファインチューニング ◼ 特定の画像で訓練することで、苦手な分野に対応する ファインチューニング前 ファインチューニング後
Diffusers ◼ Diffusers とは、段階的にノイズ除去するように訓練された機械学習システム ◼ Stable Diffusion はこれをベースに作られている 引用: https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb
Stable Diffusion の中身 ◼ Latents ◼ A text-encoder ◼ A
U-Net ◼ Scheduler ◼ An autoencoder (VAE) 引用: https://huggingface.co/blog/stable_diffusion
Stable Diffusion の中身 ◼ Latents ◼ A text-encoder ◼ A
U-Net ◼ Scheduler ◼ An autoencoder (VAE) 引用: https://huggingface.co/blog/stable_diffusion
Latents ◼ seed値をもとにノイズ画像を作る ◼ その画像を U-Net が扱えるように、 画素行列(latents)に変換 ◼ 出力する画像は
512 × 512 なのに対して、 latents はより低次元である ◼ こうすることで、メモリと計算量を軽減している 引用: https://huggingface.co/blog/stable_diffusion
text-encoder ◼ 文章をU-Netが理解できるかたちに変換する ◼ 機械翻訳ではないので、文法はあまり見ない ⚫単語(キーワード)を複数与えるだけでも機能する 引用: https://huggingface.co/blog/stable_diffusion
U-Net と Scheduler ◼ U-Net を用いて、文章をもとにノイズ画像を ノイズの少ない画像にする ◼ Scheduler で二つの画像のノイズの差を
計算してフィードバック ◼ これを繰り返して画像(のlatents) を生成する ◼ U-Net は ResNet からなるエンコーダーと デコーダーをもつ ◼ Scheduler は複数種類があり、選ぶことができる 引用: https://huggingface.co/blog/stable_diffusion
autoencoder (VAE) ◼ U-Net で生成した latents を、画像に 復号(decode)して画像を出力する ◼ VAE
はエンコーダー(encoder)と デコーダー(decoder)の二つの部分からなる ◼ 画像生成ではデコーダーしか使わないが、 訓練する時にエンコーダーも使う 引用: https://huggingface.co/blog/stable_diffusion
学習 ◼ 元の画像にノイズをかける ◼ 文章を加えてノイズを取り除く ◼ 出力と元の画像、文章から損失を計算する 文章 比較
最後に ◼ 扱いやすさを重視したお絵描きAI ◼ フリー画像の新たな選択肢 ◼ すでに Stable Diffusion を利用したアプリなどが登場している
◼ Diffusers は用途が多く、音声や動画バージョンも作成予定らしい
参考 ◼ https://github.com/huggingface/diffusers ◼ https://colab.research.google.com/github/huggingface/noteb ooks/blob/main/diffusers/stable_diffusion.ipynb