Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Google Colaboratory でStable Diffusionの実装 / Impl...
Search
tasotaku
October 29, 2022
Programming
0
350
Google Colaboratory でStable Diffusionの実装 / Implementation of Stable Diffusion at Google Colaboratory
Google Colaboratory でStable Diffusionを実装しました。少し遊んでみたのと、構造も少し調べました。
tasotaku
October 29, 2022
Tweet
Share
More Decks by tasotaku
See All by tasotaku
DQNによるポーカーの強化学習/Reinforcement Learning in Poker with DQN
tasotaku
0
280
オセロCPU/Othello CPU
tasotaku
0
83
オセロAI / OthelloAI
tasotaku
0
82
私、ChatGPTがChatGPTを解説するよ! / ChatGPT explains ChatGPT
tasotaku
0
440
機械学習入門
tasotaku
0
380
AIが作る予想外な画像を考える / Consider the unexpected images that AI creates
tasotaku
0
290
Other Decks in Programming
See All in Programming
Contemporary Test Cases
maaretp
0
140
詳細解説! ArrayListの仕組みと実装
yujisoftware
0
580
Amazon Qを使ってIaCを触ろう!
maruto
0
400
Make Impossible States Impossibleを 意識してReactのPropsを設計しよう
ikumatadokoro
0
170
CSC509 Lecture 11
javiergs
PRO
0
180
OSSで起業してもうすぐ10年 / Open Source Conference 2024 Shimane
furukawayasuto
0
100
色々なIaCツールを実際に触って比較してみる
iriikeita
0
330
Nurturing OpenJDK distribution: Eclipse Temurin Success History and plan
ivargrimstad
0
900
型付き API リクエストを実現するいくつかの手法とその選択 / Typed API Request
euxn23
8
2.2k
Kaigi on Rails 2024 〜運営の裏側〜
krpk1900
1
210
AI時代におけるSRE、 あるいはエンジニアの生存戦略
pyama86
6
1.1k
3 Effective Rules for Using Signals in Angular
manfredsteyer
PRO
0
110
Featured
See All Featured
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
109
49k
Ruby is Unlike a Banana
tanoku
97
11k
Six Lessons from altMBA
skipperchong
27
3.5k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
0
89
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
4
370
VelocityConf: Rendering Performance Case Studies
addyosmani
325
24k
Documentation Writing (for coders)
carmenintech
65
4.4k
Testing 201, or: Great Expectations
jmmastey
38
7.1k
Designing for humans not robots
tammielis
250
25k
How STYLIGHT went responsive
nonsquared
95
5.2k
How to train your dragon (web standard)
notwaldorf
88
5.7k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
1.9k
Transcript
Google Colaboratory で Stable Diffusionの実装 B2 tasotaku
もくじ ◼ Stable Diffusion とは ◼ Stable Diffusion の特徴 ◼
Diffusers ◼ Stable Diffusion の中身
Stable Diffusion とは ◼ Stable Diffusion とは、文章から画像を生成するAI ◼ Google Colaboratory
での実装方法はこちら ◼ できること ⚫ 文章から画像を生成 ⚫ 生成した画像を微調整する ⚫ 文章と画像から新たな画像を生成 ⚫ etc
Stable Diffusion の特徴 ◼ 解像度の高い画像を生成できる ◼ メモリや時間がかからない ⚫ ノートパソコンでも Google
Colaboratory で実行可能 ◼ 特定のジャンルに弱い ⚫ 学習に使ったデータセットに起因? ⚫ ファインチューニングすれば解決 ◼ 作成した画像はフリー画像
文章から画像を生成 a photograph of an astronaut riding a horse
画像と文章から画像を生成 Gold desk +
画像とマスク画像と文章から画像を生成 ◼ マスク画像を使うことで、部分的に調整が可能 robot
ファインチューニング ◼ 特定の画像で訓練することで、苦手な分野に対応する ファインチューニング前 ファインチューニング後
Diffusers ◼ Diffusers とは、段階的にノイズ除去するように訓練された機械学習システム ◼ Stable Diffusion はこれをベースに作られている 引用: https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb
Stable Diffusion の中身 ◼ Latents ◼ A text-encoder ◼ A
U-Net ◼ Scheduler ◼ An autoencoder (VAE) 引用: https://huggingface.co/blog/stable_diffusion
Stable Diffusion の中身 ◼ Latents ◼ A text-encoder ◼ A
U-Net ◼ Scheduler ◼ An autoencoder (VAE) 引用: https://huggingface.co/blog/stable_diffusion
Latents ◼ seed値をもとにノイズ画像を作る ◼ その画像を U-Net が扱えるように、 画素行列(latents)に変換 ◼ 出力する画像は
512 × 512 なのに対して、 latents はより低次元である ◼ こうすることで、メモリと計算量を軽減している 引用: https://huggingface.co/blog/stable_diffusion
text-encoder ◼ 文章をU-Netが理解できるかたちに変換する ◼ 機械翻訳ではないので、文法はあまり見ない ⚫単語(キーワード)を複数与えるだけでも機能する 引用: https://huggingface.co/blog/stable_diffusion
U-Net と Scheduler ◼ U-Net を用いて、文章をもとにノイズ画像を ノイズの少ない画像にする ◼ Scheduler で二つの画像のノイズの差を
計算してフィードバック ◼ これを繰り返して画像(のlatents) を生成する ◼ U-Net は ResNet からなるエンコーダーと デコーダーをもつ ◼ Scheduler は複数種類があり、選ぶことができる 引用: https://huggingface.co/blog/stable_diffusion
autoencoder (VAE) ◼ U-Net で生成した latents を、画像に 復号(decode)して画像を出力する ◼ VAE
はエンコーダー(encoder)と デコーダー(decoder)の二つの部分からなる ◼ 画像生成ではデコーダーしか使わないが、 訓練する時にエンコーダーも使う 引用: https://huggingface.co/blog/stable_diffusion
学習 ◼ 元の画像にノイズをかける ◼ 文章を加えてノイズを取り除く ◼ 出力と元の画像、文章から損失を計算する 文章 比較
最後に ◼ 扱いやすさを重視したお絵描きAI ◼ フリー画像の新たな選択肢 ◼ すでに Stable Diffusion を利用したアプリなどが登場している
◼ Diffusers は用途が多く、音声や動画バージョンも作成予定らしい
参考 ◼ https://github.com/huggingface/diffusers ◼ https://colab.research.google.com/github/huggingface/noteb ooks/blob/main/diffusers/stable_diffusion.ipynb