Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DQNによるポーカーの強化学習/Reinforcement Learning in Poker...
Search
tasotaku
December 14, 2023
0
780
DQNによるポーカーの強化学習/Reinforcement Learning in Poker with DQN
tasotaku
December 14, 2023
Tweet
Share
More Decks by tasotaku
See All by tasotaku
duel_masters_RAG
tasotaku
0
39
オセロCPU/Othello CPU
tasotaku
0
150
オセロAI / OthelloAI
tasotaku
0
170
私、ChatGPTがChatGPTを解説するよ! / ChatGPT explains ChatGPT
tasotaku
0
460
機械学習入門
tasotaku
0
430
AIが作る予想外な画像を考える / Consider the unexpected images that AI creates
tasotaku
0
320
Google Colaboratory でStable Diffusionの実装 / Implementation of Stable Diffusion at Google Colaboratory
tasotaku
0
390
Featured
See All Featured
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.8k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
How STYLIGHT went responsive
nonsquared
100
5.9k
Rails Girls Zürich Keynote
gr2m
95
14k
We Have a Design System, Now What?
morganepeng
54
7.9k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.1k
Embracing the Ebb and Flow
colly
88
4.9k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Transcript
DQNによるポーカーの 強化学習 宮内翼
目次 ◼ DQNとは ⚫ Q学習 ⚫ Q関数とニューラルネットワーク(NN) ⚫ 経験再生 ⚫
ターゲットネットワーク ◼ テキサスホールデムの学習
DQN(Deep Q Network)とは ◼ Q学習とニューラルネットワークを用いた手法に経験再生と ターゲットネットワークを加えた、強化学習の一種 ⚫詳しくは後述 Q学習 ニューラルネットワーク 経験再生
ターゲットネットワーク DQN
Q学習 ◼ 行動価値関数をQ関数という ◼ Q関数とは状態sと行動aの組み合わせから得られる収益 ⚫ q π (s, a)
= E[G t |S t = s, A t = a] ⚫ 最適なQ関数を知りたい ◼ Q学習はQ関数を更新する方法の一つ ◼ Q学習を使って最適なQ関数を求める
Q関数とニューラルネットワーク(NN) ◼ 例:チェスの駒の並び(状態数)は10の123乗 Q関数の候補は 状態数×行動数で膨大 ニューラルネットワークで近似 なので
経験再生 データ ニューラル ネットワーク データ保存 Q学習 学習 ランダムに 取り出す ◼データをバッファに保存して、ランダムに取り出す
◼データの偏りが無くなる バッファ
ターゲットネットワーク ◼ DQNの教師ラベルに相当するもの:TDターゲット ◼ Q関数が更新されるとTDターゲットも更新される ◼ TDターゲットの方は定期的に更新する(常には更新しない) Q関数 TDターゲット 毎回更新
毎回更新 ターゲット ネットワーク Q関数 TDターゲット 毎回更新 数十回に一度 更新
テキサスホールデムの学習 ◼ チェスや囲碁などのよく強化学習で扱われるゲームの分類 ⚫ 二人零和有限確定完全情報ゲーム ◼ テキサスホールデムの特徴 ⚫ 確定ではない(トランプのカードはランダム) ⚫
完全情報ではない(相手の手札は見えない)
テキサスホールデムの学習 DQN(NNはシンプル) 相手はCallだけするCPU 運がからむのでブレが大きい 少し学習しているように見える
テキサスホールデムの学習 DQN(NNを深くした) 縦軸の1,2,3...は 1000,2000,3000...としてます episode500ぐらいで頭打ち 得点は大きくなってる
まとめ ◼ DQNは強化学習の一種 ◼ テキサスホールデムのような不確定かつ不完全なゲームでも学習は できる