Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Evolution of e-commerce search @ shopping24
Search
Torsten Bøgh Köster
November 19, 2014
Technology
0
1.2k
Evolution of e-commerce search @ shopping24
Held at the first Search Technology Meetup in Hamburg on November, 19th.
Torsten Bøgh Köster
November 19, 2014
Tweet
Share
More Decks by Torsten Bøgh Köster
See All by Torsten Bøgh Köster
🔪 How we cut our AWS costs in half
tboeghk
0
150
Shared Nothing Logging Infrastructure
tboeghk
0
100
Beyond Cloud: A road trip into AWS and back to bare metal
tboeghk
1
64
Shared Nothing Logging Infrastructure
tboeghk
0
1.2k
Kubernetes the ❤️ way
tboeghk
0
950
Beyond Cloud: A road trip into AWS and back to bare metal
tboeghk
0
81
Open-Source-Logging und -Monitoring (W-JAX 2017)
tboeghk
0
90
Beyond Cloud (W-JAX 2017)
tboeghk
0
130
Open Source Logging & Monitoring (code.talks 2017)
tboeghk
0
94
Other Decks in Technology
See All in Technology
podman_update_2024-12
orimanabu
1
280
AWS re:Invent 2024で発表された コードを書く開発者向け機能について
maruto
0
200
祝!Iceberg祭開幕!re:Invent 2024データレイク関連アップデート10分総ざらい
kniino
3
310
C++26 エラー性動作
faithandbrave
2
780
なぜCodeceptJSを選んだか
goataka
0
160
複雑性の高いオブジェクト編集に向き合う: プラガブルなReactフォーム設計
righttouch
PRO
0
120
AI時代のデータセンターネットワーク
lycorptech_jp
PRO
1
290
スタートアップで取り組んでいるAzureとMicrosoft 365のセキュリティ対策/How to Improve Azure and Microsoft 365 Security at Startup
yuj1osm
0
230
.NET 9 のパフォーマンス改善
nenonaninu
0
1k
オプトインカメラ:UWB測位を応用したオプトイン型のカメラ計測
matthewlujp
0
180
ハイテク休憩
sat
PRO
2
170
20241220_S3 tablesの使い方を検証してみた
handy
4
630
Featured
See All Featured
Designing on Purpose - Digital PM Summit 2013
jponch
116
7k
The World Runs on Bad Software
bkeepers
PRO
65
11k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.1k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.6k
How to Think Like a Performance Engineer
csswizardry
22
1.2k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
169
50k
Rails Girls Zürich Keynote
gr2m
94
13k
Building Flexible Design Systems
yeseniaperezcruz
327
38k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
247
1.3M
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
6
520
How STYLIGHT went responsive
nonsquared
95
5.2k
Building Your Own Lightsaber
phodgson
103
6.1k
Transcript
Evolution of e-commerce search @ shopping24 Search Technology Meetup Hamburg
Torsten Bøgh Köster (Shopping24) 19. November 2014
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
@tboeghk ‣CTO shopping24 internet group ‣University of Hamburg, class of
2005 ‣Likes: search, build, delivery, code quality, road bike
None
Open Source Power. Delivered.
search system architecture overview
Fun fact: <1% visitors actually use the search bar.
Search enables automatic SEA scaling. But what about navigating afterwards?
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
Don’t get me started on tokenizing. Move expensive operations (synonyms,
stemming) to index time
German stemming: „Ein_ Geschicht_ voll__ Missverständniss_“: Refrain from Porter and
Snowball stemmer.
Extend recall using synonyms & subtopics, use edismax query parser
with boost terms for high precision. Consider reranking to penalize documents
3 approaches to navigating search results
use facetting to narrow a search result, use adaptive tree
structures
the direct spellchecker in Solr does a great job. Consider
word break. Avoid dictionaries, handle special cases using synonyms (+ custom code).
Use Solrs more like this. Supply terms in mlt request.
Works on >1 documents as well. Filter on gender (and categories).
remove terms from query and retry when hitting zero results.
Uses spellchecker & custom collators
Recycle Solr spellchecker infrastructure to retrieve related brands, categories &
searches.
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
TF/IDF ranking does not work for e-commerce search. Consider the
bmax query parser.
first impression matters: use solr grouping and expand to „fold“
similar products.
Separate data & ranking information. Retrieve ranking information from an
external data store (ExternalFileFieldType, RedisFieldType). Use boost functions to mix information retrieved. per document lookup
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
Visualize results for the target audience. Separate business from technical
views.
Custom code in Solr is failure by design. You will
inevitably hit garbage collection hell. GC will happen, deal with it.
Ultimate solution: issue replication slots to slaves. Perform Full GC
after cache warming.
Find us on github.com
Questions? @tboeghk developer.s24.com
[email protected]