$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Evolution of e-commerce search @ shopping24
Search
Torsten Bøgh Köster
November 19, 2014
Technology
0
1.2k
Evolution of e-commerce search @ shopping24
Held at the first Search Technology Meetup in Hamburg on November, 19th.
Torsten Bøgh Köster
November 19, 2014
Tweet
Share
More Decks by Torsten Bøgh Köster
See All by Torsten Bøgh Köster
LLMs im Griff: Observability, Tracing und Security
tboeghk
0
3
Oder mache ich es lieber selbst? Wie sich Kosten und Geopolitik auf Cloud-Betrieb auswirken
tboeghk
0
9
Taking an abandoned Solr search from zero to GenAI hero
tboeghk
0
32
Oder mache ich es lieber selbst? Wie sich Kosten und Geopolitik auf Cloud-Betrieb auswirken
tboeghk
0
39
🔪 How we cut our AWS costs in half
tboeghk
0
310
Shared Nothing Logging Infrastructure
tboeghk
0
120
Beyond Cloud: A road trip into AWS and back to bare metal
tboeghk
1
110
Shared Nothing Logging Infrastructure
tboeghk
0
1.3k
Kubernetes the ❤️ way
tboeghk
0
1.1k
Other Decks in Technology
See All in Technology
Lambdaの常識はどう変わる?!re:Invent 2025 before after
iwatatomoya
1
600
ウェルネス SaaS × AI、1,000万ユーザーを支える 業界特化 AI プロダクト開発への道のり
hacomono
PRO
0
100
今年のデータ・ML系アップデートと気になるアプデのご紹介
nayuts
1
450
AWS CLIの新しい認証情報設定方法aws loginコマンドの実態
wkm2
6
750
2025年 開発生産「可能」性向上報告 サイロ解消からチームが能動性を獲得するまで/ 20251216 Naoki Takahashi
shift_evolve
PRO
1
200
RAG/Agent開発のアップデートまとめ
taka0709
0
180
打 造 A I 驅 動 的 G i t H u b ⾃ 動 化 ⼯ 作 流 程
appleboy
0
350
業務のトイルをバスターせよ 〜AI時代の生存戦略〜
staka121
PRO
2
210
mairuでつくるクレデンシャルレス開発環境 / Credential-less development environment using Mailru
mirakui
5
530
GitHub Copilotを使いこなす 実例に学ぶAIコーディング活用術
74th
3
3.4k
ログ管理の新たな可能性?CloudWatchの新機能をご紹介
ikumi_ono
1
810
SREには開発組織全体で向き合う
koh_naga
0
360
Featured
See All Featured
Large-scale JavaScript Application Architecture
addyosmani
515
110k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Why Our Code Smells
bkeepers
PRO
340
57k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
970
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
Embracing the Ebb and Flow
colly
88
4.9k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Designing for Performance
lara
610
69k
Into the Great Unknown - MozCon
thekraken
40
2.2k
Transcript
Evolution of e-commerce search @ shopping24 Search Technology Meetup Hamburg
Torsten Bøgh Köster (Shopping24) 19. November 2014
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
@tboeghk ‣CTO shopping24 internet group ‣University of Hamburg, class of
2005 ‣Likes: search, build, delivery, code quality, road bike
None
Open Source Power. Delivered.
search system architecture overview
Fun fact: <1% visitors actually use the search bar.
Search enables automatic SEA scaling. But what about navigating afterwards?
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
Don’t get me started on tokenizing. Move expensive operations (synonyms,
stemming) to index time
German stemming: „Ein_ Geschicht_ voll__ Missverständniss_“: Refrain from Porter and
Snowball stemmer.
Extend recall using synonyms & subtopics, use edismax query parser
with boost terms for high precision. Consider reranking to penalize documents
3 approaches to navigating search results
use facetting to narrow a search result, use adaptive tree
structures
the direct spellchecker in Solr does a great job. Consider
word break. Avoid dictionaries, handle special cases using synonyms (+ custom code).
Use Solrs more like this. Supply terms in mlt request.
Works on >1 documents as well. Filter on gender (and categories).
remove terms from query and retry when hitting zero results.
Uses spellchecker & custom collators
Recycle Solr spellchecker infrastructure to retrieve related brands, categories &
searches.
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
TF/IDF ranking does not work for e-commerce search. Consider the
bmax query parser.
first impression matters: use solr grouping and expand to „fold“
similar products.
Separate data & ranking information. Retrieve ranking information from an
external data store (ExternalFileFieldType, RedisFieldType). Use boost functions to mix information retrieved. per document lookup
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
Visualize results for the target audience. Separate business from technical
views.
Custom code in Solr is failure by design. You will
inevitably hit garbage collection hell. GC will happen, deal with it.
Ultimate solution: issue replication slots to slaves. Perform Full GC
after cache warming.
Find us on github.com
Questions? @tboeghk developer.s24.com
[email protected]