Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Evolution of e-commerce search @ shopping24
Search
Torsten Bøgh Köster
November 19, 2014
Technology
0
1.2k
Evolution of e-commerce search @ shopping24
Held at the first Search Technology Meetup in Hamburg on November, 19th.
Torsten Bøgh Köster
November 19, 2014
Tweet
Share
More Decks by Torsten Bøgh Köster
See All by Torsten Bøgh Köster
Taking an abandoned Solr search from zero to GenAI hero
tboeghk
0
25
Oder mache ich es lieber selbst? Wie sich Kosten und Geopolitik auf Cloud-Betrieb auswirken
tboeghk
0
35
🔪 How we cut our AWS costs in half
tboeghk
0
290
Shared Nothing Logging Infrastructure
tboeghk
0
120
Beyond Cloud: A road trip into AWS and back to bare metal
tboeghk
1
100
Shared Nothing Logging Infrastructure
tboeghk
0
1.3k
Kubernetes the ❤️ way
tboeghk
0
1.1k
Beyond Cloud: A road trip into AWS and back to bare metal
tboeghk
0
100
Open-Source-Logging und -Monitoring (W-JAX 2017)
tboeghk
0
99
Other Decks in Technology
See All in Technology
AIエージェント入門 〜基礎からMCP・A2Aまで〜
shukob
0
110
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
43k
難しいセキュリティ用語をわかりやすくしてみた
yuta3110
0
330
データ戦略部門 紹介資料
sansan33
PRO
1
3.8k
AIツールでどこまでデザインを忠実に実装できるのか
oikon48
6
3.5k
Copilot Studio ハンズオン - 生成オーケストレーションモード
tomoyasasakimskk
0
150
衛星画像超解像化によって実現する2D, 3D空間情報の即時生成と“AI as a Service”/ Real-time generation spatial data enabled_by satellite image super-resolution
lehupa
0
190
Node.js 2025: What's new and what's next
ruyadorno
0
650
組織改革から開発効率向上まで! - 成功事例から見えたAI活用のポイント - / 20251016 Tetsuharu Kokaki
shift_evolve
PRO
1
180
これがLambdaレス時代のChatOpsだ!実例で学ぶAmazon Q Developerカスタムアクション活用法
iwamot
PRO
8
1.1k
ビズリーチ求職者検索におけるPLMとLLMの活用 / Search Engineering MEET UP_2-1
visional_engineering_and_design
1
170
Geospatialの世界最前線を探る [2025年版]
dayjournal
1
260
Featured
See All Featured
Designing for humans not robots
tammielis
254
26k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
Building Better People: How to give real-time feedback that sticks.
wjessup
369
20k
Keith and Marios Guide to Fast Websites
keithpitt
411
23k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Site-Speed That Sticks
csswizardry
13
910
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
The Cult of Friendly URLs
andyhume
79
6.6k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.7k
Java REST API Framework Comparison - PWX 2021
mraible
34
8.9k
Code Reviewing Like a Champion
maltzj
526
40k
Transcript
Evolution of e-commerce search @ shopping24 Search Technology Meetup Hamburg
Torsten Bøgh Köster (Shopping24) 19. November 2014
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
@tboeghk ‣CTO shopping24 internet group ‣University of Hamburg, class of
2005 ‣Likes: search, build, delivery, code quality, road bike
None
Open Source Power. Delivered.
search system architecture overview
Fun fact: <1% visitors actually use the search bar.
Search enables automatic SEA scaling. But what about navigating afterwards?
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
Don’t get me started on tokenizing. Move expensive operations (synonyms,
stemming) to index time
German stemming: „Ein_ Geschicht_ voll__ Missverständniss_“: Refrain from Porter and
Snowball stemmer.
Extend recall using synonyms & subtopics, use edismax query parser
with boost terms for high precision. Consider reranking to penalize documents
3 approaches to navigating search results
use facetting to narrow a search result, use adaptive tree
structures
the direct spellchecker in Solr does a great job. Consider
word break. Avoid dictionaries, handle special cases using synonyms (+ custom code).
Use Solrs more like this. Supply terms in mlt request.
Works on >1 documents as well. Filter on gender (and categories).
remove terms from query and retry when hitting zero results.
Uses spellchecker & custom collators
Recycle Solr spellchecker infrastructure to retrieve related brands, categories &
searches.
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
TF/IDF ranking does not work for e-commerce search. Consider the
bmax query parser.
first impression matters: use solr grouping and expand to „fold“
similar products.
Separate data & ranking information. Retrieve ranking information from an
external data store (ExternalFileFieldType, RedisFieldType). Use boost functions to mix information retrieved. per document lookup
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
Visualize results for the target audience. Separate business from technical
views.
Custom code in Solr is failure by design. You will
inevitably hit garbage collection hell. GC will happen, deal with it.
Ultimate solution: issue replication slots to slaves. Perform Full GC
after cache warming.
Find us on github.com
Questions? @tboeghk developer.s24.com
[email protected]