Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Evolution of e-commerce search @ shopping24
Search
Torsten Bøgh Köster
November 19, 2014
Technology
0
1.2k
Evolution of e-commerce search @ shopping24
Held at the first Search Technology Meetup in Hamburg on November, 19th.
Torsten Bøgh Köster
November 19, 2014
Tweet
Share
More Decks by Torsten Bøgh Köster
See All by Torsten Bøgh Köster
LLMs im Griff: Observability, Tracing und Security
tboeghk
0
3
Oder mache ich es lieber selbst? Wie sich Kosten und Geopolitik auf Cloud-Betrieb auswirken
tboeghk
0
9
Taking an abandoned Solr search from zero to GenAI hero
tboeghk
0
33
Oder mache ich es lieber selbst? Wie sich Kosten und Geopolitik auf Cloud-Betrieb auswirken
tboeghk
0
39
🔪 How we cut our AWS costs in half
tboeghk
0
310
Shared Nothing Logging Infrastructure
tboeghk
0
120
Beyond Cloud: A road trip into AWS and back to bare metal
tboeghk
1
110
Shared Nothing Logging Infrastructure
tboeghk
0
1.3k
Kubernetes the ❤️ way
tboeghk
0
1.1k
Other Decks in Technology
See All in Technology
AWS re:Invent 2025 re:Cap LT大会 データベース好きが語る re:Invent 2025 データベースアップデート/セッションの紹介
coldairflow
0
140
会社紹介資料 / Sansan Company Profile
sansan33
PRO
11
390k
【U/Day Tokyo 2025】Cygames流 最新スマートフォンゲームの技術設計 〜『Shadowverse: Worlds Beyond』におけるアーキテクチャ再設計の挑戦~
cygames
PRO
2
1.1k
AWSの新機能をフル活用した「re:Inventエージェント」開発秘話
minorun365
2
320
re:Invent2025 3つの Frontier Agents を紹介 / introducing-3-frontier-agents
tomoki10
0
350
普段使ってるClaude Skillsの紹介(by Notebooklm)
zerebom
6
1.7k
Building Serverless AI Memory with Mastra × AWS
vvatanabe
0
180
Entity Framework Core におけるIN句クエリ最適化について
htkym
0
100
MySQLとPostgreSQLのコレーション / Collation of MySQL and PostgreSQL
tmtms
1
1.1k
Agent Skillsがハーネスの垣根を超える日
gotalab555
5
2.8k
AWSインフルエンサーへの道 / load of AWS Influencer
whisaiyo
0
190
特別捜査官等研修会
nomizone
0
500
Featured
See All Featured
Music & Morning Musume
bryan
46
7k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
89
Writing Fast Ruby
sferik
630
62k
Have SEOs Ruined the Internet? - User Awareness of SEO in 2025
akashhashmi
0
180
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
72
Measuring & Analyzing Core Web Vitals
bluesmoon
9
710
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
RailsConf 2023
tenderlove
30
1.3k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
0
220
Transcript
Evolution of e-commerce search @ shopping24 Search Technology Meetup Hamburg
Torsten Bøgh Köster (Shopping24) 19. November 2014
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
@tboeghk ‣CTO shopping24 internet group ‣University of Hamburg, class of
2005 ‣Likes: search, build, delivery, code quality, road bike
None
Open Source Power. Delivered.
search system architecture overview
Fun fact: <1% visitors actually use the search bar.
Search enables automatic SEA scaling. But what about navigating afterwards?
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
Don’t get me started on tokenizing. Move expensive operations (synonyms,
stemming) to index time
German stemming: „Ein_ Geschicht_ voll__ Missverständniss_“: Refrain from Porter and
Snowball stemmer.
Extend recall using synonyms & subtopics, use edismax query parser
with boost terms for high precision. Consider reranking to penalize documents
3 approaches to navigating search results
use facetting to narrow a search result, use adaptive tree
structures
the direct spellchecker in Solr does a great job. Consider
word break. Avoid dictionaries, handle special cases using synonyms (+ custom code).
Use Solrs more like this. Supply terms in mlt request.
Works on >1 documents as well. Filter on gender (and categories).
remove terms from query and retry when hitting zero results.
Uses spellchecker & custom collators
Recycle Solr spellchecker infrastructure to retrieve related brands, categories &
searches.
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
TF/IDF ranking does not work for e-commerce search. Consider the
bmax query parser.
first impression matters: use solr grouping and expand to „fold“
similar products.
Separate data & ranking information. Retrieve ranking information from an
external data store (ExternalFileFieldType, RedisFieldType). Use boost functions to mix information retrieved. per document lookup
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
Visualize results for the target audience. Separate business from technical
views.
Custom code in Solr is failure by design. You will
inevitably hit garbage collection hell. GC will happen, deal with it.
Ultimate solution: issue replication slots to slaves. Perform Full GC
after cache warming.
Find us on github.com
Questions? @tboeghk developer.s24.com
[email protected]