Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Evolution of e-commerce search @ shopping24
Search
Torsten Bøgh Köster
November 19, 2014
Technology
0
1.2k
Evolution of e-commerce search @ shopping24
Held at the first Search Technology Meetup in Hamburg on November, 19th.
Torsten Bøgh Köster
November 19, 2014
Tweet
Share
More Decks by Torsten Bøgh Köster
See All by Torsten Bøgh Köster
LLMs im Griff: Observability, Tracing und Security
tboeghk
0
3
Oder mache ich es lieber selbst? Wie sich Kosten und Geopolitik auf Cloud-Betrieb auswirken
tboeghk
0
9
Taking an abandoned Solr search from zero to GenAI hero
tboeghk
0
32
Oder mache ich es lieber selbst? Wie sich Kosten und Geopolitik auf Cloud-Betrieb auswirken
tboeghk
0
39
🔪 How we cut our AWS costs in half
tboeghk
0
310
Shared Nothing Logging Infrastructure
tboeghk
0
120
Beyond Cloud: A road trip into AWS and back to bare metal
tboeghk
1
110
Shared Nothing Logging Infrastructure
tboeghk
0
1.3k
Kubernetes the ❤️ way
tboeghk
0
1.1k
Other Decks in Technology
See All in Technology
AI-DLCを現場にインストールしてみた:プロトタイプ開発で分かったこと・やめたこと
recruitengineers
PRO
2
150
非CUDAの悲哀 〜Claude Code と挑んだ image to 3D “Hunyuan3D”を EVO-X2(Ryzen AI Max+395)で動作させるチャレンジ〜
hawkymisc
2
190
MLflowダイエット大作戦
lycorptech_jp
PRO
1
140
S3を正しく理解するための内部構造の読解
nrinetcom
PRO
2
100
生成AI活用の型ハンズオン〜顧客課題起点で設計する7つのステップ
yushin_n
0
230
会社紹介資料 / Sansan Company Profile
sansan33
PRO
11
390k
「Managed Instances」と「durable functions」で広がるAWS Lambdaのユースケース
lamaglama39
0
330
業務のトイルをバスターせよ 〜AI時代の生存戦略〜
staka121
PRO
2
210
Debugging Edge AI on Zephyr and Lessons Learned
iotengineer22
0
220
シニアソフトウェアエンジニアになるためには
kworkdev
PRO
3
170
Microsoft Agent 365 についてゆっくりじっくり理解する!
skmkzyk
0
360
文字列の並び順 / Unicode Collation
tmtms
3
600
Featured
See All Featured
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1.3k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Docker and Python
trallard
47
3.7k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.3k
Producing Creativity
orderedlist
PRO
348
40k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
[SF Ruby Conf 2025] Rails X
palkan
0
530
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.3k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Transcript
Evolution of e-commerce search @ shopping24 Search Technology Meetup Hamburg
Torsten Bøgh Köster (Shopping24) 19. November 2014
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
@tboeghk ‣CTO shopping24 internet group ‣University of Hamburg, class of
2005 ‣Likes: search, build, delivery, code quality, road bike
None
Open Source Power. Delivered.
search system architecture overview
Fun fact: <1% visitors actually use the search bar.
Search enables automatic SEA scaling. But what about navigating afterwards?
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
Don’t get me started on tokenizing. Move expensive operations (synonyms,
stemming) to index time
German stemming: „Ein_ Geschicht_ voll__ Missverständniss_“: Refrain from Porter and
Snowball stemmer.
Extend recall using synonyms & subtopics, use edismax query parser
with boost terms for high precision. Consider reranking to penalize documents
3 approaches to navigating search results
use facetting to narrow a search result, use adaptive tree
structures
the direct spellchecker in Solr does a great job. Consider
word break. Avoid dictionaries, handle special cases using synonyms (+ custom code).
Use Solrs more like this. Supply terms in mlt request.
Works on >1 documents as well. Filter on gender (and categories).
remove terms from query and retry when hitting zero results.
Uses spellchecker & custom collators
Recycle Solr spellchecker infrastructure to retrieve related brands, categories &
searches.
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
TF/IDF ranking does not work for e-commerce search. Consider the
bmax query parser.
first impression matters: use solr grouping and expand to „fold“
similar products.
Separate data & ranking information. Retrieve ranking information from an
external data store (ExternalFileFieldType, RedisFieldType). Use boost functions to mix information retrieved. per document lookup
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
Visualize results for the target audience. Separate business from technical
views.
Custom code in Solr is failure by design. You will
inevitably hit garbage collection hell. GC will happen, deal with it.
Ultimate solution: issue replication slots to slaves. Perform Full GC
after cache warming.
Find us on github.com
Questions? @tboeghk developer.s24.com
[email protected]