Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Evolution of e-commerce search @ shopping24
Search
Torsten Bøgh Köster
November 19, 2014
Technology
0
1.2k
Evolution of e-commerce search @ shopping24
Held at the first Search Technology Meetup in Hamburg on November, 19th.
Torsten Bøgh Köster
November 19, 2014
Tweet
Share
More Decks by Torsten Bøgh Köster
See All by Torsten Bøgh Köster
Taking an abandoned Solr search from zero to GenAI hero
tboeghk
0
14
Oder mache ich es lieber selbst? Wie sich Kosten und Geopolitik auf Cloud-Betrieb auswirken
tboeghk
0
34
🔪 How we cut our AWS costs in half
tboeghk
0
250
Shared Nothing Logging Infrastructure
tboeghk
0
110
Beyond Cloud: A road trip into AWS and back to bare metal
tboeghk
1
100
Shared Nothing Logging Infrastructure
tboeghk
0
1.3k
Kubernetes the ❤️ way
tboeghk
0
1k
Beyond Cloud: A road trip into AWS and back to bare metal
tboeghk
0
100
Open-Source-Logging und -Monitoring (W-JAX 2017)
tboeghk
0
97
Other Decks in Technology
See All in Technology
Tokyo_reInforce_2025_recap_iam_access_analyzer
hiashisan
0
160
無意味な開発生産性の議論から抜け出すための予兆検知とお金とAI
i35_267
2
8.6k
自律的なスケーリング手法FASTにおけるVPoEとしてのアカウンタビリティ / dev-productivity-con-2025
yoshikiiida
1
10k
Zephyr RTOSを使った開発コンペに参加した件
iotengineer22
1
180
Lazy application authentication with Tailscale
bluehatbrit
0
140
Tech-Verse 2025 Global CTO Session
lycorptech_jp
PRO
0
1.4k
Glacierだからってコストあきらめてない? / JAWS Meet Glacier Cost
taishin
1
120
一体いつからSRE NEXTがSREだけのカンファレンスだと錯覚していた? / When did you ever get the idea that SRE NEXT was a conference just for SREs?
vtryo
1
140
Node-RED × MCP 勉強会 vol.1
1ftseabass
PRO
0
180
fukabori.fm 出張版: 売上高617億円と高稼働率を陰で支えた社内ツール開発のあれこれ話 / 20250704 Yoshimasa Iwase & Tomoo Morikawa
shift_evolve
PRO
2
4.9k
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
3
940
「良さそう」と「とても良い」の間には 「良さそうだがホンマか」がたくさんある / 2025.07.01 LLM品質Night
smiyawaki0820
1
480
Featured
See All Featured
Documentation Writing (for coders)
carmenintech
72
4.9k
Navigating Team Friction
lara
187
15k
Art, The Web, and Tiny UX
lynnandtonic
299
21k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Scaling GitHub
holman
459
140k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
940
YesSQL, Process and Tooling at Scale
rocio
173
14k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.5k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Building a Modern Day E-commerce SEO Strategy
aleyda
42
7.4k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Transcript
Evolution of e-commerce search @ shopping24 Search Technology Meetup Hamburg
Torsten Bøgh Köster (Shopping24) 19. November 2014
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
@tboeghk ‣CTO shopping24 internet group ‣University of Hamburg, class of
2005 ‣Likes: search, build, delivery, code quality, road bike
None
Open Source Power. Delivered.
search system architecture overview
Fun fact: <1% visitors actually use the search bar.
Search enables automatic SEA scaling. But what about navigating afterwards?
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
Don’t get me started on tokenizing. Move expensive operations (synonyms,
stemming) to index time
German stemming: „Ein_ Geschicht_ voll__ Missverständniss_“: Refrain from Porter and
Snowball stemmer.
Extend recall using synonyms & subtopics, use edismax query parser
with boost terms for high precision. Consider reranking to penalize documents
3 approaches to navigating search results
use facetting to narrow a search result, use adaptive tree
structures
the direct spellchecker in Solr does a great job. Consider
word break. Avoid dictionaries, handle special cases using synonyms (+ custom code).
Use Solrs more like this. Supply terms in mlt request.
Works on >1 documents as well. Filter on gender (and categories).
remove terms from query and retry when hitting zero results.
Uses spellchecker & custom collators
Recycle Solr spellchecker infrastructure to retrieve related brands, categories &
searches.
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
TF/IDF ranking does not work for e-commerce search. Consider the
bmax query parser.
first impression matters: use solr grouping and expand to „fold“
similar products.
Separate data & ranking information. Retrieve ranking information from an
external data store (ExternalFileFieldType, RedisFieldType). Use boost functions to mix information retrieved. per document lookup
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
Visualize results for the target audience. Separate business from technical
views.
Custom code in Solr is failure by design. You will
inevitably hit garbage collection hell. GC will happen, deal with it.
Ultimate solution: issue replication slots to slaves. Perform Full GC
after cache warming.
Find us on github.com
Questions? @tboeghk developer.s24.com
[email protected]