Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Evolution of e-commerce search @ shopping24
Search
Torsten Bøgh Köster
November 19, 2014
Technology
0
1.2k
Evolution of e-commerce search @ shopping24
Held at the first Search Technology Meetup in Hamburg on November, 19th.
Torsten Bøgh Köster
November 19, 2014
Tweet
Share
More Decks by Torsten Bøgh Köster
See All by Torsten Bøgh Köster
LLMs im Griff: Observability, Tracing und Security
tboeghk
0
4
Oder mache ich es lieber selbst? Wie sich Kosten und Geopolitik auf Cloud-Betrieb auswirken
tboeghk
0
10
Taking an abandoned Solr search from zero to GenAI hero
tboeghk
0
37
Oder mache ich es lieber selbst? Wie sich Kosten und Geopolitik auf Cloud-Betrieb auswirken
tboeghk
0
39
🔪 How we cut our AWS costs in half
tboeghk
0
320
Shared Nothing Logging Infrastructure
tboeghk
0
120
Beyond Cloud: A road trip into AWS and back to bare metal
tboeghk
1
110
Shared Nothing Logging Infrastructure
tboeghk
0
1.3k
Kubernetes the ❤️ way
tboeghk
0
1.1k
Other Decks in Technology
See All in Technology
Oracle Cloud Infrastructure:2025年12月度サービス・アップデート
oracle4engineer
PRO
0
200
技術選定、下から見るか?横から見るか?
masakiokuda
0
180
Keynoteから見るAWSの頭の中
nrinetcom
PRO
1
170
2025年 山梨の技術コミュニティを振り返る
yuukis
0
150
Redshift認可、アップデートでどう変わった?
handy
1
130
Everything As Code
yosuke_ai
0
500
自己管理型チームと個人のセルフマネジメント 〜モチベーション編〜
kakehashi
PRO
5
2.2k
_第4回__AIxIoTビジネス共創ラボ紹介資料_20251203.pdf
iotcomjpadmin
0
180
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
CQRS/ESになぜアクターモデルが必要なのか
j5ik2o
0
690
ESXi のAIOps だ!2025冬
unnowataru
0
480
業務の煩悩を祓うAI活用術108選 / AI 108 Usages
smartbank
9
19k
Featured
See All Featured
The World Runs on Bad Software
bkeepers
PRO
72
12k
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
1
340
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
How to train your dragon (web standard)
notwaldorf
97
6.5k
How to Ace a Technical Interview
jacobian
281
24k
The SEO Collaboration Effect
kristinabergwall1
0
320
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
48
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
420
Designing Experiences People Love
moore
143
24k
Git: the NoSQL Database
bkeepers
PRO
432
66k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Transcript
Evolution of e-commerce search @ shopping24 Search Technology Meetup Hamburg
Torsten Bøgh Köster (Shopping24) 19. November 2014
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
@tboeghk ‣CTO shopping24 internet group ‣University of Hamburg, class of
2005 ‣Likes: search, build, delivery, code quality, road bike
None
Open Source Power. Delivered.
search system architecture overview
Fun fact: <1% visitors actually use the search bar.
Search enables automatic SEA scaling. But what about navigating afterwards?
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
Don’t get me started on tokenizing. Move expensive operations (synonyms,
stemming) to index time
German stemming: „Ein_ Geschicht_ voll__ Missverständniss_“: Refrain from Porter and
Snowball stemmer.
Extend recall using synonyms & subtopics, use edismax query parser
with boost terms for high precision. Consider reranking to penalize documents
3 approaches to navigating search results
use facetting to narrow a search result, use adaptive tree
structures
the direct spellchecker in Solr does a great job. Consider
word break. Avoid dictionaries, handle special cases using synonyms (+ custom code).
Use Solrs more like this. Supply terms in mlt request.
Works on >1 documents as well. Filter on gender (and categories).
remove terms from query and retry when hitting zero results.
Uses spellchecker & custom collators
Recycle Solr spellchecker infrastructure to retrieve related brands, categories &
searches.
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
TF/IDF ranking does not work for e-commerce search. Consider the
bmax query parser.
first impression matters: use solr grouping and expand to „fold“
similar products.
Separate data & ranking information. Retrieve ranking information from an
external data store (ExternalFileFieldType, RedisFieldType). Use boost functions to mix information retrieved. per document lookup
Agenda Why search? Motivation & introduction Evolutionary steps taken Advanced
steps Pitfalls
Visualize results for the target audience. Separate business from technical
views.
Custom code in Solr is failure by design. You will
inevitably hit garbage collection hell. GC will happen, deal with it.
Ultimate solution: issue replication slots to slaves. Perform Full GC
after cache warming.
Find us on github.com
Questions? @tboeghk developer.s24.com
[email protected]