$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Refactoring a Solr based api application
Search
Torsten Bøgh Köster
April 13, 2012
Programming
3
110
Refactoring a Solr based api application
Held on Apache Lucene Eurocon 2011 in Barcelona
Torsten Bøgh Köster
April 13, 2012
Tweet
Share
More Decks by Torsten Bøgh Köster
See All by Torsten Bøgh Köster
LLMs im Griff: Observability, Tracing und Security
tboeghk
0
3
Oder mache ich es lieber selbst? Wie sich Kosten und Geopolitik auf Cloud-Betrieb auswirken
tboeghk
0
9
Taking an abandoned Solr search from zero to GenAI hero
tboeghk
0
31
Oder mache ich es lieber selbst? Wie sich Kosten und Geopolitik auf Cloud-Betrieb auswirken
tboeghk
0
39
🔪 How we cut our AWS costs in half
tboeghk
0
310
Shared Nothing Logging Infrastructure
tboeghk
0
120
Beyond Cloud: A road trip into AWS and back to bare metal
tboeghk
1
110
Shared Nothing Logging Infrastructure
tboeghk
0
1.3k
Kubernetes the ❤️ way
tboeghk
0
1.1k
Other Decks in Programming
See All in Programming
WebRTC と Rust と8K 60fps
tnoho
2
2k
AIコードレビューがチームの"文脈"を 読めるようになるまで
marutaku
0
360
宅宅自以為的浪漫:跟 AI 一起為自己辦的研討會寫一個售票系統
eddie
0
510
これだけで丸わかり!LangChain v1.0 アップデートまとめ
os1ma
6
1.9k
AIコーディングエージェント(Gemini)
kondai24
0
230
re:Invent 2025 のイケてるサービスを紹介する
maroon1st
0
110
AIエンジニアリングのご紹介 / Introduction to AI Engineering
rkaga
8
2.8k
生成AIを利用するだけでなく、投資できる組織へ
pospome
2
340
エディターってAIで操作できるんだぜ
kis9a
0
730
なあ兄弟、 余白の意味を考えてから UI実装してくれ!
ktcryomm
11
11k
チームをチームにするEM
hitode909
0
340
【CA.ai #3】Google ADKを活用したAI Agent開発と運用知見
harappa80
0
310
Featured
See All Featured
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
970
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Statistics for Hackers
jakevdp
799
230k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Visualization
eitanlees
150
16k
Transcript
Architectural lessons learned from refactoring a Solr based API application.
Torsten Bøgh Köster (Shopping24) Apache Lucene Eurocon, 19.10.2011
Contents Shopping24 and it‘s API Technical scaling solutions Sharding Caching
Solr Cores „Elastic“ infrastructure business requirements as key factor
@tboeghk Software- and systems- architect 2 years experience with Solr
3 years experience with Lucene Team of 7 Java developers currently at Shopping24
shopping24 internet group
1 portal became n portals
30 partner shops became 700
500k to 7m documents
index fact time •16 Gig Data •Single-Core-Layout •Up to 17s
response time •Machine size limited •Stalled at solr version 1.4 •API designed for small tools
scaling goal: 15-50m documents
ask the nerds „Shard!“ That‘ll be fun! „Use spare compute
cores at Amazon?“ breathe load into the cloud „Reduce that index size“ „Get rid of those long running queries!“
data sharding ...
... is highly effective. 125ms 250ms 375ms 500ms 1 4
8 12 16 20 1shard 2shard 3shard 4shard 6shard 8shard concurrent requests
Sharding: size matters the bigger your index gets, the more
complex your queries are, the more concurrent requests, the more sharding you need
but wait ...
Why do we have such a big index?
7m documents vs. 2m active poducts
fashion product lifecycle meets SEO Bastografie / photocase.com
Separation of duties! Remove unsearchable data from your index.
Why do we have complex queries?
A Solr index designed for 1 portal
Grown into a multi-portal index
Let “sharding“ follow your data ...
... and build separate cores for every client.
Duplicate data as long as access is fast. andybahn /
photocase.com
Streamline your index provisioning process.
A thousand splendid cores at your fingertips.
Throwing hardware at problems. Automated.
evil traps: latency, $$
mirror your complete system – solve load balancer problems froodmat
/ photocase.com
I said faster!
use a cache layer like Varnish.
What about those complex queries? Why do we have them?
And how do we get rid of them?
Lost in encapsulation: Solr API exposed to world.
What‘s the key factor?
look at your business requirements
decrease complexity
Questions? Comments? Ideas? Twitter: @tboeghk Github: @tboeghk Email:
[email protected]
Web:
http://www.s24.com Images: sxc.hu (unless noted otherwise)