Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Refactoring a Solr based api application
Search
Torsten Bøgh Köster
April 13, 2012
Programming
3
100
Refactoring a Solr based api application
Held on Apache Lucene Eurocon 2011 in Barcelona
Torsten Bøgh Köster
April 13, 2012
Tweet
Share
More Decks by Torsten Bøgh Köster
See All by Torsten Bøgh Köster
Taking an abandoned Solr search from zero to GenAI hero
tboeghk
0
12
Oder mache ich es lieber selbst? Wie sich Kosten und Geopolitik auf Cloud-Betrieb auswirken
tboeghk
0
34
🔪 How we cut our AWS costs in half
tboeghk
0
240
Shared Nothing Logging Infrastructure
tboeghk
0
110
Beyond Cloud: A road trip into AWS and back to bare metal
tboeghk
1
100
Shared Nothing Logging Infrastructure
tboeghk
0
1.3k
Kubernetes the ❤️ way
tboeghk
0
1k
Beyond Cloud: A road trip into AWS and back to bare metal
tboeghk
0
99
Open-Source-Logging und -Monitoring (W-JAX 2017)
tboeghk
0
97
Other Decks in Programming
See All in Programming
DroidKnights 2025 - 다양한 스크롤 뷰에서의 영상 재생
gaeun5744
2
150
統一感のある Go コードを生成 AI の力で手にいれる
otakakot
0
3k
Cloudflare Realtime と Workers でつくるサーバーレス WebRTC
nekoya3
0
400
C++20 射影変換
faithandbrave
0
450
赤裸々に公開。 TSKaigiのオフシーズン
takezoux2
0
130
ドメインモデリングにおける抽象の役割、tagless-finalによるDSL構築、そして型安全な最適化
knih
10
1.8k
インターフェース設計のコツとツボ
togishima
2
710
プロダクト開発でも使おう 関数のオーバーロード
yoiwamoto
0
150
Team topologies and the microservice architecture: a synergistic relationship
cer
PRO
0
140
カクヨムAndroidアプリのリブート
numeroanddev
0
420
TypeScript LSP の今までとこれから
quramy
1
500
Select API from Kotlin Coroutine
jmatsu
1
120
Featured
See All Featured
Build your cross-platform service in a week with App Engine
jlugia
231
18k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.6k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3k
The Cult of Friendly URLs
andyhume
79
6.4k
Unsuck your backbone
ammeep
671
58k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
123
52k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.7k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Transcript
Architectural lessons learned from refactoring a Solr based API application.
Torsten Bøgh Köster (Shopping24) Apache Lucene Eurocon, 19.10.2011
Contents Shopping24 and it‘s API Technical scaling solutions Sharding Caching
Solr Cores „Elastic“ infrastructure business requirements as key factor
@tboeghk Software- and systems- architect 2 years experience with Solr
3 years experience with Lucene Team of 7 Java developers currently at Shopping24
shopping24 internet group
1 portal became n portals
30 partner shops became 700
500k to 7m documents
index fact time •16 Gig Data •Single-Core-Layout •Up to 17s
response time •Machine size limited •Stalled at solr version 1.4 •API designed for small tools
scaling goal: 15-50m documents
ask the nerds „Shard!“ That‘ll be fun! „Use spare compute
cores at Amazon?“ breathe load into the cloud „Reduce that index size“ „Get rid of those long running queries!“
data sharding ...
... is highly effective. 125ms 250ms 375ms 500ms 1 4
8 12 16 20 1shard 2shard 3shard 4shard 6shard 8shard concurrent requests
Sharding: size matters the bigger your index gets, the more
complex your queries are, the more concurrent requests, the more sharding you need
but wait ...
Why do we have such a big index?
7m documents vs. 2m active poducts
fashion product lifecycle meets SEO Bastografie / photocase.com
Separation of duties! Remove unsearchable data from your index.
Why do we have complex queries?
A Solr index designed for 1 portal
Grown into a multi-portal index
Let “sharding“ follow your data ...
... and build separate cores for every client.
Duplicate data as long as access is fast. andybahn /
photocase.com
Streamline your index provisioning process.
A thousand splendid cores at your fingertips.
Throwing hardware at problems. Automated.
evil traps: latency, $$
mirror your complete system – solve load balancer problems froodmat
/ photocase.com
I said faster!
use a cache layer like Varnish.
What about those complex queries? Why do we have them?
And how do we get rid of them?
Lost in encapsulation: Solr API exposed to world.
What‘s the key factor?
look at your business requirements
decrease complexity
Questions? Comments? Ideas? Twitter: @tboeghk Github: @tboeghk Email:
[email protected]
Web:
http://www.s24.com Images: sxc.hu (unless noted otherwise)