Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Refactoring a Solr based api application
Search
Torsten Bøgh Köster
April 13, 2012
Programming
3
100
Refactoring a Solr based api application
Held on Apache Lucene Eurocon 2011 in Barcelona
Torsten Bøgh Köster
April 13, 2012
Tweet
Share
More Decks by Torsten Bøgh Köster
See All by Torsten Bøgh Köster
Taking an abandoned Solr search from zero to GenAI hero
tboeghk
0
16
Oder mache ich es lieber selbst? Wie sich Kosten und Geopolitik auf Cloud-Betrieb auswirken
tboeghk
0
35
🔪 How we cut our AWS costs in half
tboeghk
0
260
Shared Nothing Logging Infrastructure
tboeghk
0
120
Beyond Cloud: A road trip into AWS and back to bare metal
tboeghk
1
100
Shared Nothing Logging Infrastructure
tboeghk
0
1.3k
Kubernetes the ❤️ way
tboeghk
0
1k
Beyond Cloud: A road trip into AWS and back to bare metal
tboeghk
0
100
Open-Source-Logging und -Monitoring (W-JAX 2017)
tboeghk
0
99
Other Decks in Programming
See All in Programming
SwiftでMCPサーバーを作ろう!
giginet
PRO
2
230
変化を楽しむエンジニアリング ~ いままでとこれから ~
murajun1978
0
680
管你要 trace 什麼、bpftrace 用下去就對了 — COSCUP 2025
shunghsiyu
0
330
Gemini CLIの"強み"を知る! Gemini CLIとClaude Codeを比較してみた!
kotahisafuru
3
950
それ CLI フレームワークがなくてもできるよ / Building CLI Tools Without Frameworks
orgachem
PRO
17
3.7k
バイブスあるコーディングで ~PHP~ 便利ツールをつくるプラクティス
uzulla
1
330
ゲームの物理
fadis
3
880
新世界の理解
koriym
0
130
画像コンペでのベースラインモデルの育て方
tattaka
3
1.4k
マイコンでもRustのtestがしたい その2/KernelVM Tokyo 18
tnishinaga
2
1.6k
JetBrainsのAI機能の紹介 #jjug
yusuke
0
190
Reactの歴史を振り返る
tutinoko
1
170
Featured
See All Featured
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Navigating Team Friction
lara
188
15k
Git: the NoSQL Database
bkeepers
PRO
431
65k
Documentation Writing (for coders)
carmenintech
73
5k
A better future with KSS
kneath
239
17k
Statistics for Hackers
jakevdp
799
220k
Code Reviewing Like a Champion
maltzj
524
40k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
440
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Done Done
chrislema
185
16k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Transcript
Architectural lessons learned from refactoring a Solr based API application.
Torsten Bøgh Köster (Shopping24) Apache Lucene Eurocon, 19.10.2011
Contents Shopping24 and it‘s API Technical scaling solutions Sharding Caching
Solr Cores „Elastic“ infrastructure business requirements as key factor
@tboeghk Software- and systems- architect 2 years experience with Solr
3 years experience with Lucene Team of 7 Java developers currently at Shopping24
shopping24 internet group
1 portal became n portals
30 partner shops became 700
500k to 7m documents
index fact time •16 Gig Data •Single-Core-Layout •Up to 17s
response time •Machine size limited •Stalled at solr version 1.4 •API designed for small tools
scaling goal: 15-50m documents
ask the nerds „Shard!“ That‘ll be fun! „Use spare compute
cores at Amazon?“ breathe load into the cloud „Reduce that index size“ „Get rid of those long running queries!“
data sharding ...
... is highly effective. 125ms 250ms 375ms 500ms 1 4
8 12 16 20 1shard 2shard 3shard 4shard 6shard 8shard concurrent requests
Sharding: size matters the bigger your index gets, the more
complex your queries are, the more concurrent requests, the more sharding you need
but wait ...
Why do we have such a big index?
7m documents vs. 2m active poducts
fashion product lifecycle meets SEO Bastografie / photocase.com
Separation of duties! Remove unsearchable data from your index.
Why do we have complex queries?
A Solr index designed for 1 portal
Grown into a multi-portal index
Let “sharding“ follow your data ...
... and build separate cores for every client.
Duplicate data as long as access is fast. andybahn /
photocase.com
Streamline your index provisioning process.
A thousand splendid cores at your fingertips.
Throwing hardware at problems. Automated.
evil traps: latency, $$
mirror your complete system – solve load balancer problems froodmat
/ photocase.com
I said faster!
use a cache layer like Varnish.
What about those complex queries? Why do we have them?
And how do we get rid of them?
Lost in encapsulation: Solr API exposed to world.
What‘s the key factor?
look at your business requirements
decrease complexity
Questions? Comments? Ideas? Twitter: @tboeghk Github: @tboeghk Email:
[email protected]
Web:
http://www.s24.com Images: sxc.hu (unless noted otherwise)