Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Refactoring a Solr based api application
Search
Torsten Bøgh Köster
April 13, 2012
Programming
3
110
Refactoring a Solr based api application
Held on Apache Lucene Eurocon 2011 in Barcelona
Torsten Bøgh Köster
April 13, 2012
Tweet
Share
More Decks by Torsten Bøgh Köster
See All by Torsten Bøgh Köster
LLMs im Griff: Observability, Tracing und Security
tboeghk
0
12
Oder mache ich es lieber selbst? Wie sich Kosten und Geopolitik auf Cloud-Betrieb auswirken
tboeghk
0
11
Taking an abandoned Solr search from zero to GenAI hero
tboeghk
0
37
Oder mache ich es lieber selbst? Wie sich Kosten und Geopolitik auf Cloud-Betrieb auswirken
tboeghk
0
41
🔪 How we cut our AWS costs in half
tboeghk
0
330
Shared Nothing Logging Infrastructure
tboeghk
0
120
Beyond Cloud: A road trip into AWS and back to bare metal
tboeghk
1
110
Shared Nothing Logging Infrastructure
tboeghk
0
1.4k
Kubernetes the ❤️ way
tboeghk
0
1.1k
Other Decks in Programming
See All in Programming
humanlayerのブログから学ぶ、良いCLAUDE.mdの書き方
tsukamoto1783
0
180
Kotlin Multiplatform Meetup - Compose Multiplatform 외부 의존성 아키텍처 설계부터 운영까지
wisemuji
0
190
Honoを使ったリモートMCPサーバでAIツールとの連携を加速させる!
tosuri13
1
170
Patterns of Patterns
denyspoltorak
0
1.4k
Oxlint JS plugins
kazupon
1
250
AIで開発はどれくらい加速したのか?AIエージェントによるコード生成を、現場の評価と研究開発の評価の両面からdeep diveしてみる
daisuketakeda
1
970
疑似コードによるプロンプト記述、どのくらい正確に実行される?
kokuyouwind
0
380
インターン生でもAuth0で認証基盤刷新が出来るのか
taku271
0
190
ThorVG Viewer In VS Code
nors
0
760
AI時代の認知負荷との向き合い方
optfit
0
140
開発者から情シスまで - 多様なユーザー層に届けるAPI提供戦略 / Postman API Night Okinawa 2026 Winter
tasshi
0
190
AIエージェント、”どう作るか”で差は出るか? / AI Agents: Does the "How" Make a Difference?
rkaga
4
2k
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
110
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Beyond borders and beyond the search box: How to win the global "messy middle" with AI-driven SEO
davidcarrasco
1
48
Bash Introduction
62gerente
615
210k
Deep Space Network (abreviated)
tonyrice
0
44
Six Lessons from altMBA
skipperchong
29
4.1k
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
0
270
Automating Front-end Workflow
addyosmani
1371
200k
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
97
First, design no harm
axbom
PRO
2
1.1k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
Transcript
Architectural lessons learned from refactoring a Solr based API application.
Torsten Bøgh Köster (Shopping24) Apache Lucene Eurocon, 19.10.2011
Contents Shopping24 and it‘s API Technical scaling solutions Sharding Caching
Solr Cores „Elastic“ infrastructure business requirements as key factor
@tboeghk Software- and systems- architect 2 years experience with Solr
3 years experience with Lucene Team of 7 Java developers currently at Shopping24
shopping24 internet group
1 portal became n portals
30 partner shops became 700
500k to 7m documents
index fact time •16 Gig Data •Single-Core-Layout •Up to 17s
response time •Machine size limited •Stalled at solr version 1.4 •API designed for small tools
scaling goal: 15-50m documents
ask the nerds „Shard!“ That‘ll be fun! „Use spare compute
cores at Amazon?“ breathe load into the cloud „Reduce that index size“ „Get rid of those long running queries!“
data sharding ...
... is highly effective. 125ms 250ms 375ms 500ms 1 4
8 12 16 20 1shard 2shard 3shard 4shard 6shard 8shard concurrent requests
Sharding: size matters the bigger your index gets, the more
complex your queries are, the more concurrent requests, the more sharding you need
but wait ...
Why do we have such a big index?
7m documents vs. 2m active poducts
fashion product lifecycle meets SEO Bastografie / photocase.com
Separation of duties! Remove unsearchable data from your index.
Why do we have complex queries?
A Solr index designed for 1 portal
Grown into a multi-portal index
Let “sharding“ follow your data ...
... and build separate cores for every client.
Duplicate data as long as access is fast. andybahn /
photocase.com
Streamline your index provisioning process.
A thousand splendid cores at your fingertips.
Throwing hardware at problems. Automated.
evil traps: latency, $$
mirror your complete system – solve load balancer problems froodmat
/ photocase.com
I said faster!
use a cache layer like Varnish.
What about those complex queries? Why do we have them?
And how do we get rid of them?
Lost in encapsulation: Solr API exposed to world.
What‘s the key factor?
look at your business requirements
decrease complexity
Questions? Comments? Ideas? Twitter: @tboeghk Github: @tboeghk Email:
[email protected]
Web:
http://www.s24.com Images: sxc.hu (unless noted otherwise)