Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Refactoring a Solr based api application
Search
Torsten Bøgh Köster
April 13, 2012
Programming
3
110
Refactoring a Solr based api application
Held on Apache Lucene Eurocon 2011 in Barcelona
Torsten Bøgh Köster
April 13, 2012
Tweet
Share
More Decks by Torsten Bøgh Köster
See All by Torsten Bøgh Köster
LLMs im Griff: Observability, Tracing und Security
tboeghk
0
12
Oder mache ich es lieber selbst? Wie sich Kosten und Geopolitik auf Cloud-Betrieb auswirken
tboeghk
0
11
Taking an abandoned Solr search from zero to GenAI hero
tboeghk
0
37
Oder mache ich es lieber selbst? Wie sich Kosten und Geopolitik auf Cloud-Betrieb auswirken
tboeghk
0
42
🔪 How we cut our AWS costs in half
tboeghk
0
330
Shared Nothing Logging Infrastructure
tboeghk
0
120
Beyond Cloud: A road trip into AWS and back to bare metal
tboeghk
1
110
Shared Nothing Logging Infrastructure
tboeghk
0
1.4k
Kubernetes the ❤️ way
tboeghk
0
1.1k
Other Decks in Programming
See All in Programming
CSC307 Lecture 09
javiergs
PRO
1
830
コントリビューターによるDenoのすゝめ / Deno Recommendations by a Contributor
petamoriken
0
200
Implementation Patterns
denyspoltorak
0
280
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
2
1.9k
humanlayerのブログから学ぶ、良いCLAUDE.mdの書き方
tsukamoto1783
0
190
AI Agent Tool のためのバックエンドアーキテクチャを考える #encraft
izumin5210
6
1.8k
16年目のピクシブ百科事典を支える最新の技術基盤 / The Modern Tech Stack Powering Pixiv Encyclopedia in its 16th Year
ahuglajbclajep
5
1k
Package Management Learnings from Homebrew
mikemcquaid
0
210
QAフローを最適化し、品質水準を満たしながらリリースまでの期間を最短化する #RSGT2026
shibayu36
2
4.3k
フロントエンド開発の勘所 -複数事業を経験して見えた判断軸の違い-
heimusu
7
2.8k
メルカリのリーダビリティチームが取り組む、AI時代のスケーラブルな品質文化
cloverrose
2
510
コマンドとリード間の連携に対する脅威分析フレームワーク
pandayumi
1
450
Featured
See All Featured
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
120
WCS-LA-2024
lcolladotor
0
450
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
1
180
My Coaching Mixtape
mlcsv
0
47
A better future with KSS
kneath
240
18k
Prompt Engineering for Job Search
mfonobong
0
160
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
Statistics for Hackers
jakevdp
799
230k
Leo the Paperboy
mayatellez
4
1.4k
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
200
Building Applications with DynamoDB
mza
96
6.9k
Transcript
Architectural lessons learned from refactoring a Solr based API application.
Torsten Bøgh Köster (Shopping24) Apache Lucene Eurocon, 19.10.2011
Contents Shopping24 and it‘s API Technical scaling solutions Sharding Caching
Solr Cores „Elastic“ infrastructure business requirements as key factor
@tboeghk Software- and systems- architect 2 years experience with Solr
3 years experience with Lucene Team of 7 Java developers currently at Shopping24
shopping24 internet group
1 portal became n portals
30 partner shops became 700
500k to 7m documents
index fact time •16 Gig Data •Single-Core-Layout •Up to 17s
response time •Machine size limited •Stalled at solr version 1.4 •API designed for small tools
scaling goal: 15-50m documents
ask the nerds „Shard!“ That‘ll be fun! „Use spare compute
cores at Amazon?“ breathe load into the cloud „Reduce that index size“ „Get rid of those long running queries!“
data sharding ...
... is highly effective. 125ms 250ms 375ms 500ms 1 4
8 12 16 20 1shard 2shard 3shard 4shard 6shard 8shard concurrent requests
Sharding: size matters the bigger your index gets, the more
complex your queries are, the more concurrent requests, the more sharding you need
but wait ...
Why do we have such a big index?
7m documents vs. 2m active poducts
fashion product lifecycle meets SEO Bastografie / photocase.com
Separation of duties! Remove unsearchable data from your index.
Why do we have complex queries?
A Solr index designed for 1 portal
Grown into a multi-portal index
Let “sharding“ follow your data ...
... and build separate cores for every client.
Duplicate data as long as access is fast. andybahn /
photocase.com
Streamline your index provisioning process.
A thousand splendid cores at your fingertips.
Throwing hardware at problems. Automated.
evil traps: latency, $$
mirror your complete system – solve load balancer problems froodmat
/ photocase.com
I said faster!
use a cache layer like Varnish.
What about those complex queries? Why do we have them?
And how do we get rid of them?
Lost in encapsulation: Solr API exposed to world.
What‘s the key factor?
look at your business requirements
decrease complexity
Questions? Comments? Ideas? Twitter: @tboeghk Github: @tboeghk Email:
[email protected]
Web:
http://www.s24.com Images: sxc.hu (unless noted otherwise)