Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
推しと始めるMIR
Search
てーとく
February 13, 2020
Programming
0
800
推しと始めるMIR
アイドルのファンになったことをきっかけに機械学習の分野の一つであるMIR(音楽情報検索)に入門したので、MIRについて紹介しつつ作ったものの話とかをゆるふわにしようと思います!
てーとく
February 13, 2020
Tweet
Share
Other Decks in Programming
See All in Programming
そのAIレビュー、レビューしてますか? / Are you reviewing those AI reviews?
rkaga
6
4.6k
2026年 エンジニアリング自己学習法
yumechi
0
140
AIによる開発の民主化を支える コンテキスト管理のこれまでとこれから
mulyu
3
470
組織で育むオブザーバビリティ
ryota_hnk
0
180
AI & Enginnering
codelynx
0
120
Smart Handoff/Pickup ガイド - Claude Code セッション管理
yukiigarashi
0
150
Unicodeどうしてる? PHPから見たUnicode対応と他言語での対応についてのお伺い
youkidearitai
PRO
1
2.6k
[KNOTS 2026登壇資料]AIで拡張‧交差する プロダクト開発のプロセス および携わるメンバーの役割
hisatake
0
290
AI によるインシデント初動調査の自動化を行う AI インシデントコマンダーを作った話
azukiazusa1
1
750
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
200
Lambda のコードストレージ容量に気をつけましょう
tattwan718
0
140
AI Agent の開発と運用を支える Durable Execution #AgentsInProd
izumin5210
7
2.3k
Featured
See All Featured
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
70
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
260
4 Signs Your Business is Dying
shpigford
187
22k
WCS-LA-2024
lcolladotor
0
450
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.3k
Google's AI Overviews - The New Search
badams
0
910
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Game over? The fight for quality and originality in the time of robots
wayneb77
1
120
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
67
Darren the Foodie - Storyboard
khoart
PRO
2
2.4k
Transcript
ਪ͠ͱ࢝ΊΔMIR ͯʔͱ͘ (@tetoku_sakana) 2020-02-13 #stapy54
͜Μͳײ͡ͰਐΈ·͢ • ࣗݾհ • MIRͱ • MIRͷ࣮ྫհ • MIRͷ࢝Ίํ
୭ • ͯʔͱ͘ (@tetoku_sakana) • WebΤϯδχΞ • nao_y ͞Μͷ͓༠͍ͰࢀՃͤ͞ ͍ͯͨͩ͘͜ͱʹͳΓ·ͨ͠
None
ਪ͠ࣄ ᶃ • ΦαΧφϝʔλʔ • @osakanameter • ΦαΧφͷMVͷ࠶ੜճ ϑΥϩϫʔͷՄ ࢹԽ௨
• ެࣜϗʔϜϖʔδͷߋ৽ ใχϡʔεͷ৴
ਪ͠ࣄ ᶄ • ΦαΧφΞʔΧΠϒ • ΦαΧφʹ·ͭΘΔ ΠϯλϏϡʔهࣄͳ ͲΛ·ͱΊͨαʔϏ ε
ͦΜͳ͜ΜͳͰ MIRʹೖ͠·ͨ͠ʂ
MIR
None
None
MIR • Music Information Retrieval • ԻָใݕࡧԻָใॲཧͱ༁͞ΕΔ • ݕࡧ͋Μ·Γؔͳ͍ •
ػցֶश×Իָ • (ओʹඇੜܥͷ) Իָؔ࿈ͷ૯শ
MIRͷλεΫ (Ұྫ) • ԻָԻָใ (ௐςϯϙɺίʔυ) ͷݕ ग़ɾਪఆ • Իָͷࣗಈྨ (δϟϯϧงғؾͳͲ)
• ࣖίϐͷࣗಈԽ • ԻָͰԻָΛݕࡧ
MIRͷख๏ • Content-based • ԻָՎࢺͳͲɺָۂσʔλΛѻ͏ • Context-based • ΞʔςΟετͷհจͳͲɺָۂҎ֎ͷपล σʔλΛѻ͏
pythonͱMIR • librosa • madmom • essentia
import librosa >>> filepath = librosa.util.example_audio_file() >>> y, sr =
librosa.load(filepath, offset=30, duration=5) >>> librosa.feature.mfcc(y=y, sr=sr) # MFCCͷऔಘ array([[ -5.229e+02, -4.944e+02, ..., -5.229e+02, -5.229e+02], [ 7.105e-15, 3.787e+01, ..., -7.105e-15, -7.105e-15], ..., [ 1.066e-14, -7.500e+00, ..., 1.421e-14, 1.421e-14], [ 3.109e-14, -5.058e+00, ..., 2.931e-14, 2.931e-14]])
ΦαΧφͷۂ͍͠…
ΦαΧφͷதͰ Ұ൪ָ͍͠ۂʁ
ϚεϩοΫࢦ
None
• Elias Pampalk et al., Proceedings of the ACM Multimedia
2002 • ָۂྨࣅΛࣗݾ৫ԽϚοϓ(SOM)Λͬ ͯՄࢹԽ Content-based Organization and Visualization of Music Archives
Իڹ৺ཧֶΛߟྀͨ͠ɺௌײ্ͷloudnessͷม ԽΛಛྔͱͯ͠நग़͢Δ “Rhythm Patterns”ͱͯ͠ఏҊ͞ΕͯΔಛྔநग़ख๏
None
ϚεϩοΫࢦ͕ ࢉग़Ͱ͖ͦ͏ʂ
ॲཧ֓ཁ 1. STFTΛ͔͚ͯ(ରईͷ) εϖΫτϩάϥϜ Λऔಘ 2. (1) ΛϒϩοΫʹׂ͠(rolling window)ɺͦ ΕͧΕ࣌ؒ࣠ํʹSTFTΛ͔͚ͯέϓετϩ
άϥϜΛऔಘ 3. (2) ʹରͯ͠60ύʔηϯλΠϧΛٻΊΔ
None
None
def minmax(pattern): return (pattern - pattern.min()) / (pattern.max() - pattern.min())
# ࡶ def mathrock_index(pattern): pattern = pattern.sum(axis=0) pattern = minmax(pattern) * 100 pattern = np.diff(pattern) return np.percentile(pattern, q=90) def calc_lfp(filename): cent = CentSpectrum(win_length=2048, hop_length=512) D = librosa.amplitude_to_db(cent.proc(filename)) D_normalized = cent.normalize(D) lfp = LogarithmicFluctuationPattern(hop_length=256) return lfp.proc(D_normalized)
None
MIRͷ࢝Ίํ
MIRͷ࢝Ίํ • MIREXISMIRͷจ • ipynb • musicinformationretrieval.com • ΟʔϯՊେͷnbviewer
MIRͷ࢝Ίํ • SpotifyͷAPIΛ͏ • Audio Features for a Track •
Audio Analysis for a Track
{ "danceability": 0.735, "energy": 0.578, "key": 5, "loudness": -11.84, "mode":
0, "speechiness": 0.0461, "acousticness": 0.514, "instrumentalness": 0.0902, "liveness": 0.159, "valence": 0.624, "tempo": 98.002, "type": "audio_features", "id": "06AKEBrKUckW0KREUWRnvT", "uri": "spotify:track:06AKEBrKUckW0KREUWRnvT", "track_href": “https://api.spotify.com/v1/tracks/…", "analysis_url": “https://api.spotify.com/v1/audio-analysis/…”, "duration_ms": 255349, "time_signature": 4 }
None
·ͱΊ • ใগͳ͍͚ͲMIRͷෑډ͍ • ϥΠϒϥϦlibrosa͕͓͢͢Ί • SpotifyͷAPI͓͢͢Ί • ΦαΧφྑ͍
ਪ͠ۦಈ։ൃ Ұॹʹ࢝ΊͯΈ·͠ΐ͏ ͝੩ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ʙ