Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Spatio-Temporal Graph Convolutional Networks: A...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
tetsu9923
January 10, 2022
0
47
Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting
tetsu9923
January 10, 2022
Tweet
Share
More Decks by tetsu9923
See All by tetsu9923
LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation
tetsu9923
0
620
Deep-learning Architecture for Short-term Passenger Flow Forecasting in Urban Rail Transit
tetsu9923
0
25
Featured
See All Featured
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
240
BBQ
matthewcrist
89
10k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3.1k
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
117
110k
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Git: the NoSQL Database
bkeepers
PRO
432
66k
The Curse of the Amulet
leimatthew05
1
8.7k
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
210
Claude Code のすすめ
schroneko
67
210k
Documentation Writing (for coders)
carmenintech
77
5.3k
A better future with KSS
kneath
240
18k
It's Worth the Effort
3n
188
29k
Transcript
Spatio-temporal graph convolutional networks: A deep learning framework for traffic
forecasting [Yu+, IJCAI 2018] • テーマ • 交通データなどの時空間グラフデータを扱うSTGCNの提案 • 新規性 • 時間的な依存関係をGated CNNによって捉える • 空間的な依存関係をGraph CNNによって捉える • 結果 • 2つの道路データセットを用いた実験でSoTA 1
背景 • 従来手法では時間的な依存関係を捉えるためにRNN、 空間的な依存関係を捉えるためにCNNを使用していた。しかし、 • RNN: 計算量が大きい • CNN: 交通網のトポロジー構造を考慮できない
→計算コストを削減するためにGated CNNを用いて、 交通網のトポロジー構造を考慮するためにGraph CNNを用いる 2
提案手法 3 ST-Conv Block Temporal Gated-Conv 全体図 Mステップ前 までの交通量 隣接行列
交通量の 予測値 Spatial Graph-Convは通常のGCNを使用 [Bruna+, ICLR 2014], [Kipf+, ICLR 2017] CNN+FC層
Temporal Gated-Conv 4 • 各ノードごとに以下の操作を行う 𝐶 𝐶 カーネルサイズ 𝐾 ∗
𝐶 ∗ 𝐶 の畳み込み σ 𝑀 𝑀 − 𝐾 + 1 アダマール積 Attentionの役割 時 間 方 向
評価実験 2種類の道路データセットを使用 • BJER4 • 北京市内の道路の平均速度(5分おき) • 12本の道路のデータを利用 • PeMSD7
• カリフォルニア州の高速道路の平均速度(5分おき) • 228か所の測定値を含むPeMSD7(M)、1,026か所の測定値を含む PeMSD7(L)を用意 非定型なデータを避けるため、いずれも平日のみのデータを使用 5
結果 • すべての評価指標、タイムスパンでSTGCNの精度が最も高い (Cheb)は[Bruna+, ICLR 2014]のSpectralな手法、(1st)は[Kipf+, ICLR 2017]のSpatialな手法 6
結果 • すべての評価指標、タイムスパンでSTGCNの性能が最も高い • 予測のタイムスパンが⾧いほど相対的にSTGCNの性能が良くなる 7
結果 • 比較的性能の高かったSTGCNとGCGRU [Li+, ICLR 2018]の計算コスト • RNNを使用しないためSTGCNの計算コストが大きく削減されている 8
まとめ • テーマ • 交通データなどの時空間グラフデータを扱うSTGCNの提案 • 手法 • 時間的な依存関係をGated CNNによって捉える
• 空間的な依存関係をGraph CNNによって捉える • 結果 • 2つの道路データセットを用いた実験でSoTA 9