Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Spatio-Temporal Graph Convolutional Networks: A...
Search
tetsu9923
January 10, 2022
0
47
Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting
tetsu9923
January 10, 2022
Tweet
Share
More Decks by tetsu9923
See All by tetsu9923
LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation
tetsu9923
0
610
Deep-learning Architecture for Short-term Passenger Flow Forecasting in Urban Rail Transit
tetsu9923
0
25
Featured
See All Featured
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
58
41k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
37
How to build a perfect <img>
jonoalderson
0
4.8k
Being A Developer After 40
akosma
91
590k
How to Ace a Technical Interview
jacobian
281
24k
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
210
Everyday Curiosity
cassininazir
0
110
GitHub's CSS Performance
jonrohan
1032
470k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Building Applications with DynamoDB
mza
96
6.9k
Transcript
Spatio-temporal graph convolutional networks: A deep learning framework for traffic
forecasting [Yu+, IJCAI 2018] • テーマ • 交通データなどの時空間グラフデータを扱うSTGCNの提案 • 新規性 • 時間的な依存関係をGated CNNによって捉える • 空間的な依存関係をGraph CNNによって捉える • 結果 • 2つの道路データセットを用いた実験でSoTA 1
背景 • 従来手法では時間的な依存関係を捉えるためにRNN、 空間的な依存関係を捉えるためにCNNを使用していた。しかし、 • RNN: 計算量が大きい • CNN: 交通網のトポロジー構造を考慮できない
→計算コストを削減するためにGated CNNを用いて、 交通網のトポロジー構造を考慮するためにGraph CNNを用いる 2
提案手法 3 ST-Conv Block Temporal Gated-Conv 全体図 Mステップ前 までの交通量 隣接行列
交通量の 予測値 Spatial Graph-Convは通常のGCNを使用 [Bruna+, ICLR 2014], [Kipf+, ICLR 2017] CNN+FC層
Temporal Gated-Conv 4 • 各ノードごとに以下の操作を行う 𝐶 𝐶 カーネルサイズ 𝐾 ∗
𝐶 ∗ 𝐶 の畳み込み σ 𝑀 𝑀 − 𝐾 + 1 アダマール積 Attentionの役割 時 間 方 向
評価実験 2種類の道路データセットを使用 • BJER4 • 北京市内の道路の平均速度(5分おき) • 12本の道路のデータを利用 • PeMSD7
• カリフォルニア州の高速道路の平均速度(5分おき) • 228か所の測定値を含むPeMSD7(M)、1,026か所の測定値を含む PeMSD7(L)を用意 非定型なデータを避けるため、いずれも平日のみのデータを使用 5
結果 • すべての評価指標、タイムスパンでSTGCNの精度が最も高い (Cheb)は[Bruna+, ICLR 2014]のSpectralな手法、(1st)は[Kipf+, ICLR 2017]のSpatialな手法 6
結果 • すべての評価指標、タイムスパンでSTGCNの性能が最も高い • 予測のタイムスパンが⾧いほど相対的にSTGCNの性能が良くなる 7
結果 • 比較的性能の高かったSTGCNとGCGRU [Li+, ICLR 2018]の計算コスト • RNNを使用しないためSTGCNの計算コストが大きく削減されている 8
まとめ • テーマ • 交通データなどの時空間グラフデータを扱うSTGCNの提案 • 手法 • 時間的な依存関係をGated CNNによって捉える
• 空間的な依存関係をGraph CNNによって捉える • 結果 • 2つの道路データセットを用いた実験でSoTA 9