Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LightGCN: Simplifying and Powering Graph Convol...
Search
tetsu9923
January 10, 2022
Technology
0
570
LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation
tetsu9923
January 10, 2022
Tweet
Share
More Decks by tetsu9923
See All by tetsu9923
Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting
tetsu9923
0
46
Deep-learning Architecture for Short-term Passenger Flow Forecasting in Urban Rail Transit
tetsu9923
0
23
Other Decks in Technology
See All in Technology
コスト削減の基本の「キ」~ コスト消費3大リソースへの対策 ~
smt7174
2
220
【 LLMエンジニアがヒューマノイド開発に挑んでみた 】 - 第104回 Machine Learning 15minutes! Hybrid
soneo1127
0
140
Product Management Conference -AI時代に進化するPdM-
kojima111
0
230
どこで動かすか、誰が動かすか 〜 kintoneのインフラ基盤刷新と運用体制のシフト 〜
ueokande
0
200
絶対に失敗できないキャンペーンページの高速かつ安全な開発、WINTICKET × microCMS の開発事例
microcms
0
130
あなたの知らない OneDrive
murachiakira
0
240
JOAI発表資料 @ 関東kaggler会
joai_committee
1
410
Preferred Networks (PFN) とLLM Post-Training チームの紹介 / 第4回 関東Kaggler会 スポンサーセッション
pfn
PRO
1
260
Go で言うところのアレは TypeScript で言うとコレ / Kyoto.なんか #7
susisu
7
1.9k
自社製CMSからmicroCMSへのリプレースがプロダクトグロースを加速させた話
nextbeatdev
0
190
Yahoo!広告ビジネス基盤におけるバックエンド開発
lycorptech_jp
PRO
1
280
株式会社ARAV 採用案内
maqui
0
370
Featured
See All Featured
BBQ
matthewcrist
89
9.8k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Automating Front-end Workflow
addyosmani
1370
200k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
The World Runs on Bad Software
bkeepers
PRO
70
11k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
480
Navigating Team Friction
lara
189
15k
Faster Mobile Websites
deanohume
309
31k
How to Ace a Technical Interview
jacobian
279
23k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Transcript
LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation [He+,
SIGIR 2020] • テーマ • 情報推薦向けに単純化したGCNモデルを提案 • 概要 • GCNを用いた協調フィルタリングの手法である Neural Graph Collaborative Filtering (NGCF) [Wang+, SIGIR 2019] の構造を単純化したLightGCNを提案 • 結果 • NGCFよりも計算コスト、精度の両面で性能向上 1
Neural Graph Collaborative Filtering (NGCF) [Wang+, SIGIR 2019] • GCNを用いてユーザ・アイテム間の相互関係を考慮した
埋め込み表現を得る手法 • それらの内積をとってリンクごとにスコアを得る 2
Neural Graph Collaborative Filtering (NGCF) [Wang+, SIGIR 2019] 3 ユーザ埋め込みベ
クトル アイテム埋め込み ベクトル ユーザ𝑢に隣接 するアイテム𝑖 アイテム𝑖に隣接 するユーザ𝑢
NGCFの各要素を取り除く • NGCFの各要素を取り除き、単純化したモデルの精度を検証 • NGCF-f: 特徴変換行列 , を取り除く • NGCF-n:
非線形関数σを取り除く • NGCF-fn: , とσの両方を取り除く 4
NGCFの各要素を取り除く • 非線形関数σを取り除くと精度は下がるが、特徴変換行列 , を 取り除くと精度が上がる • 両方取り除くと最も精度が高くなる 5
LightGCN • 各層では近傍ノードの特徴量の和を取るだけ • 各層の出力の重み付き和( )を最終的な出力とする • 学習するパラメータはノードの初期特徴量 , のみ
6
LightGCN 7
結果 8 • 精度、収束速度の両面でLightGCNが優れている • Gowalla: ユーザを推薦?(位置情報を利用したSNS) • Yelp2018: お店を推薦(≒食べログ)
• Amazon-book: 本を推薦
結果 • 精度、収束速度の両面でLightGCNが優れている • Gowalla: ユーザを推薦?(位置情報を利用したSNS) • Yelp2018: お店を推薦(≒食べログ) •
Amazon-book: 本を推薦 9
単純化して精度が上がる理由の考察 • 一般的なGCNのノード分類タスクでは、ノードに意味的な特徴量が 付与される(e.g. 論文のdoc2vec) • ユーザ・アイテム間の関係を表すグラフにおいては、 ノードの初期特徴量がIDを表すone-hotベクトルでしかない → 特徴変換や非線形関数をかける操作がより良い特徴量を学習する
ことに貢献しない • 単純な入力に複雑すぎる操作を加えても意味ない、というイメージ 10
まとめ • テーマ • 情報推薦向けに単純化したGCNモデルを提案 • 概要 • GCNを用いた協調フィルタリングの手法である Neural
Graph Collaborative Filtering (NGCF) [Wang+, SIGIR 2019] の構造を単純化したLightGCNを提案 • 結果 • NGCFよりも計算コスト、精度の両面で性能向上 11