Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LightGCN: Simplifying and Powering Graph Convol...
Search
tetsu9923
January 10, 2022
Technology
0
550
LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation
tetsu9923
January 10, 2022
Tweet
Share
More Decks by tetsu9923
See All by tetsu9923
Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting
tetsu9923
0
46
Deep-learning Architecture for Short-term Passenger Flow Forecasting in Urban Rail Transit
tetsu9923
0
23
Other Decks in Technology
See All in Technology
GMOペパボのデータ基盤とデータ活用の現在地 / Current State of GMO Pepabo's Data Infrastructure and Data Utilization
zaimy
3
190
✨敗北解法コレクション✨〜Expertだった頃に足りなかった知識と技術〜
nanachi
1
400
【新卒研修資料】数理最適化 / Mathematical Optimization
brainpadpr
25
11k
2時間で300+テーブルをデータ基盤に連携するためのAI活用 / FukuokaDataEngineer
sansan_randd
0
130
2025-07-31: GitHub Copilot Agent mode at Vibe Coding Cafe (15min)
chomado
2
370
バクラクによるコーポレート業務の自動運転 #BetAIDay
layerx
PRO
1
830
猫でもわかるQ_CLI(CDK開発編)+ちょっとだけKiro
kentapapa
0
3.4k
Claude Codeから我々が学ぶべきこと
s4yuba
6
1.8k
AI関数が早くなったので試してみよう
kumakura
0
120
【Λ(らむだ)】最近のアプデ情報 / RPALT20250729
lambda
0
230
Claude CodeでKiroの仕様駆動開発を実現させるには...
gotalab555
3
860
Google Cloud で学ぶデータエンジニアリング入門 2025年版 #GoogleCloudNext / 20250805
kazaneya
PRO
11
2.7k
Featured
See All Featured
Typedesign – Prime Four
hannesfritz
42
2.7k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
The Straight Up "How To Draw Better" Workshop
denniskardys
235
140k
GitHub's CSS Performance
jonrohan
1031
460k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
19k
Speed Design
sergeychernyshev
32
1.1k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
332
22k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
420
Become a Pro
speakerdeck
PRO
29
5.5k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Transcript
LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation [He+,
SIGIR 2020] • テーマ • 情報推薦向けに単純化したGCNモデルを提案 • 概要 • GCNを用いた協調フィルタリングの手法である Neural Graph Collaborative Filtering (NGCF) [Wang+, SIGIR 2019] の構造を単純化したLightGCNを提案 • 結果 • NGCFよりも計算コスト、精度の両面で性能向上 1
Neural Graph Collaborative Filtering (NGCF) [Wang+, SIGIR 2019] • GCNを用いてユーザ・アイテム間の相互関係を考慮した
埋め込み表現を得る手法 • それらの内積をとってリンクごとにスコアを得る 2
Neural Graph Collaborative Filtering (NGCF) [Wang+, SIGIR 2019] 3 ユーザ埋め込みベ
クトル アイテム埋め込み ベクトル ユーザ𝑢に隣接 するアイテム𝑖 アイテム𝑖に隣接 するユーザ𝑢
NGCFの各要素を取り除く • NGCFの各要素を取り除き、単純化したモデルの精度を検証 • NGCF-f: 特徴変換行列 , を取り除く • NGCF-n:
非線形関数σを取り除く • NGCF-fn: , とσの両方を取り除く 4
NGCFの各要素を取り除く • 非線形関数σを取り除くと精度は下がるが、特徴変換行列 , を 取り除くと精度が上がる • 両方取り除くと最も精度が高くなる 5
LightGCN • 各層では近傍ノードの特徴量の和を取るだけ • 各層の出力の重み付き和( )を最終的な出力とする • 学習するパラメータはノードの初期特徴量 , のみ
6
LightGCN 7
結果 8 • 精度、収束速度の両面でLightGCNが優れている • Gowalla: ユーザを推薦?(位置情報を利用したSNS) • Yelp2018: お店を推薦(≒食べログ)
• Amazon-book: 本を推薦
結果 • 精度、収束速度の両面でLightGCNが優れている • Gowalla: ユーザを推薦?(位置情報を利用したSNS) • Yelp2018: お店を推薦(≒食べログ) •
Amazon-book: 本を推薦 9
単純化して精度が上がる理由の考察 • 一般的なGCNのノード分類タスクでは、ノードに意味的な特徴量が 付与される(e.g. 論文のdoc2vec) • ユーザ・アイテム間の関係を表すグラフにおいては、 ノードの初期特徴量がIDを表すone-hotベクトルでしかない → 特徴変換や非線形関数をかける操作がより良い特徴量を学習する
ことに貢献しない • 単純な入力に複雑すぎる操作を加えても意味ない、というイメージ 10
まとめ • テーマ • 情報推薦向けに単純化したGCNモデルを提案 • 概要 • GCNを用いた協調フィルタリングの手法である Neural
Graph Collaborative Filtering (NGCF) [Wang+, SIGIR 2019] の構造を単純化したLightGCNを提案 • 結果 • NGCFよりも計算コスト、精度の両面で性能向上 11