Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LightGCN: Simplifying and Powering Graph Convol...
Search
tetsu9923
January 10, 2022
Technology
0
480
LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation
tetsu9923
January 10, 2022
Tweet
Share
More Decks by tetsu9923
See All by tetsu9923
Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting
tetsu9923
0
44
Deep-learning Architecture for Short-term Passenger Flow Forecasting in Urban Rail Transit
tetsu9923
0
21
Other Decks in Technology
See All in Technology
ペアーズにおけるData Catalog導入の取り組み
hisamouna
0
270
Classmethod AI Talks(CATs) #20 司会進行スライド(2025.04.10) / classmethod-ai-talks-aka-cats_moderator-slides_vol20_2025-04-10
shinyaa31
0
100
.mdc駆動ナレッジマネジメント/.mdc-driven knowledge management
yodakeisuke
23
10k
20250328_RubyKaigiで出会い鯛_____RubyKaigiから始まったはじめてのOSSコントリビュート.pdf
mterada1228
0
490
Startups On Rails 2025 @ Tropical on Rails
irinanazarova
0
240
ウォンテッドリーにおける Platform Engineering
bgpat
0
180
AIエージェント開発における「攻めの品質改善」と「守りの品質保証」 / 2024.04.09 GPU UNITE 新年会 2025
smiyawaki0820
0
380
TopAppBar Composableをカスタムする
hunachi
0
170
大規模サービスにおける カスケード障害
takumiogawa
3
790
フロントエンドも盛り上げたい!フロントエンドCBとAmplifyの軌跡
mkdev10
2
200
Re:VIEWで書いた「Compose で Android の edge-to-edge に対応する」をRoo Codeで発表資料にしてもらった
tomoya0x00
0
260
Lightdashの利活用状況 ー導入から2年経った現在地_20250409
hirokiigeta
2
260
Featured
See All Featured
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
12
650
Agile that works and the tools we love
rasmusluckow
328
21k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
51
2.4k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
40
2.2k
The Invisible Side of Design
smashingmag
299
50k
Statistics for Hackers
jakevdp
798
220k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.7k
GraphQLとの向き合い方2022年版
quramy
45
14k
The Cost Of JavaScript in 2023
addyosmani
48
7.7k
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.6k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Transcript
LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation [He+,
SIGIR 2020] • テーマ • 情報推薦向けに単純化したGCNモデルを提案 • 概要 • GCNを用いた協調フィルタリングの手法である Neural Graph Collaborative Filtering (NGCF) [Wang+, SIGIR 2019] の構造を単純化したLightGCNを提案 • 結果 • NGCFよりも計算コスト、精度の両面で性能向上 1
Neural Graph Collaborative Filtering (NGCF) [Wang+, SIGIR 2019] • GCNを用いてユーザ・アイテム間の相互関係を考慮した
埋め込み表現を得る手法 • それらの内積をとってリンクごとにスコアを得る 2
Neural Graph Collaborative Filtering (NGCF) [Wang+, SIGIR 2019] 3 ユーザ埋め込みベ
クトル アイテム埋め込み ベクトル ユーザ𝑢に隣接 するアイテム𝑖 アイテム𝑖に隣接 するユーザ𝑢
NGCFの各要素を取り除く • NGCFの各要素を取り除き、単純化したモデルの精度を検証 • NGCF-f: 特徴変換行列 , を取り除く • NGCF-n:
非線形関数σを取り除く • NGCF-fn: , とσの両方を取り除く 4
NGCFの各要素を取り除く • 非線形関数σを取り除くと精度は下がるが、特徴変換行列 , を 取り除くと精度が上がる • 両方取り除くと最も精度が高くなる 5
LightGCN • 各層では近傍ノードの特徴量の和を取るだけ • 各層の出力の重み付き和( )を最終的な出力とする • 学習するパラメータはノードの初期特徴量 , のみ
6
LightGCN 7
結果 8 • 精度、収束速度の両面でLightGCNが優れている • Gowalla: ユーザを推薦?(位置情報を利用したSNS) • Yelp2018: お店を推薦(≒食べログ)
• Amazon-book: 本を推薦
結果 • 精度、収束速度の両面でLightGCNが優れている • Gowalla: ユーザを推薦?(位置情報を利用したSNS) • Yelp2018: お店を推薦(≒食べログ) •
Amazon-book: 本を推薦 9
単純化して精度が上がる理由の考察 • 一般的なGCNのノード分類タスクでは、ノードに意味的な特徴量が 付与される(e.g. 論文のdoc2vec) • ユーザ・アイテム間の関係を表すグラフにおいては、 ノードの初期特徴量がIDを表すone-hotベクトルでしかない → 特徴変換や非線形関数をかける操作がより良い特徴量を学習する
ことに貢献しない • 単純な入力に複雑すぎる操作を加えても意味ない、というイメージ 10
まとめ • テーマ • 情報推薦向けに単純化したGCNモデルを提案 • 概要 • GCNを用いた協調フィルタリングの手法である Neural
Graph Collaborative Filtering (NGCF) [Wang+, SIGIR 2019] の構造を単純化したLightGCNを提案 • 結果 • NGCFよりも計算コスト、精度の両面で性能向上 11