Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Speed, Correctness, or Simplicity: Choose 3
Search
Tom Switzer
January 30, 2015
Programming
1
360
Speed, Correctness, or Simplicity: Choose 3
This talk introduces the floating point filter implementation in Spire (spire.math.FpFilter).
Tom Switzer
January 30, 2015
Tweet
Share
Other Decks in Programming
See All in Programming
ゼロダウンタイムでミドルウェアの バージョンアップを実現した手法と課題
wind111
0
130
詳細の決定を遅らせつつ実装を早くする
shimabox
1
1.2k
モビリティSaaSにおけるデータ利活用の発展
nealle
0
200
なぜ強調表示できず ** が表示されるのか — Perlで始まったMarkdownの歴史と日本語文書における課題
kwahiro
12
5.9k
CloudNative Days Winter 2025: 一週間で作る低レイヤコンテナランタイム
ternbusty
4
930
AsyncSequenceとAsyncStreamのプロポーザルを全部読む!!
s_shimotori
1
280
Flutterアプリ運用の現場で役立った監視Tips 5選
ostk0069
1
450
CSC509 Lecture 13
javiergs
PRO
0
250
Dive into Triton Internals
appleparan
0
490
Functional Calisthenics in Kotlin: Kotlinで「関数型エクササイズ」を実践しよう
lagenorhynque
0
130
自動テストのアーキテクチャとその理由ー大規模ゲーム開発の場合ー
segadevtech
2
1k
Inside of Swift Export
giginet
PRO
1
560
Featured
See All Featured
Producing Creativity
orderedlist
PRO
348
40k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
How STYLIGHT went responsive
nonsquared
100
5.9k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Why Our Code Smells
bkeepers
PRO
340
57k
BBQ
matthewcrist
89
9.9k
Done Done
chrislema
186
16k
GitHub's CSS Performance
jonrohan
1032
470k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
970
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Transcript
Speed, Correctness, or Simplicity: Choose 3 Tom
Switzer @9xxit h;ps://github.com/9xxit/fpfilter-‐talk
Overview Floa9ng point is “good enough”…
most of the 9me.
Op9ons Use Double, live with the errors.
Use higher precision type, live with performance loss. But, there is a 3rd op9on…
Floa9ng Point Filters Use floa9ng point when you
can. Use higher precision when you can’t.
Err… Not So Simple Solve problem using floa9ng point
approxima9on… Maintain an error bound on approxima9on. Re-‐evaluate with exact type if error too large.
The Catch
What is the determinant of my matrix?
Not Good For: Minimizing Errors in Floa9ng Point Arithme9c
What is the sign of the determinant of
my matrix?
Good For: Making a Decision
FpFilter[A] Simple wrapper: FpFilter[Rational] Standard Opera2ons +, -‐,
*, /, .sqrt, etc Fast predictes signum, compare, isWhole, etc.
FpFilter[A] class FpFilter[A]( apx: Double, mes: Double, ind: Int,
exact: => A ) { … } floa9ng point approxima9on error bounds
FpFilter[A] class FpFilter[A]( apx: Double, mes: Double, ind: Int,
exact: => A ) { … } error bounds “Exact Geometric Computa2on Using Cascading.” Burnikel, Funke & Seel.
FpFilter[A] class FpFilter[A]( apx: Double, mes: Double, ind: Int,
exact: => A ) { … } error bounds thunk for higher precision Welcome to …
… Macro City def abs(implicit ev: Signed[A]): FpFilter[A] =
macro FpFilter.absImpl[A] def unary_- (implicit ev: Rng[A]) : FpFilter[A] = macro FpFilter.negateImpl[A] def +(rhs: FpFilter[A])(implicit ev: Semiring[A]): FpFilter[A] = macro FpFilter.plusImpl[A] def -(rhs: FpFilter[A])(implicit ev: Rng[A]): FpFilter[A] = macro FpFilter.minusImpl[A] def *(rhs: FpFilter[A])(implicit ev: Semiring[A]): FpFilter[A] = macro FpFilter.timesImpl[A] def /(rhs: FpFilter[A])(implicit ev: Field[A]): FpFilter[A] = macro FpFilter.divideImpl[A] def sqrt(implicit ev: NRoot[A]): FpFilter[A] = macro FpFilter.sqrtImpl[A] def <(rhs: FpFilter[A])(implicit ev0: Signed[A], ev1: Rng[A]): Boolean = macro FpFilter.ltImpl[A] def >(rhs: FpFilter[A])(implicit ev0: Signed[A], ev1: Rng[A]): Boolean = macro FpFilter.gtImpl[A] def <=(rhs: FpFilter[A])(implicit ev0: Signed[A], ev1: Rng[A]): Boolean = macro FpFilter.ltEqImpl[A] def >=(rhs: FpFilter[A])(implicit ev0: Signed[A], ev1: Rng[A]): Boolean = macro FpFilter.gtEqImpl[A] def ===(rhs: FpFilter[A])(implicit ev0: Signed[A], ev1: Rng[A]): Boolean = macro FpFilter.eqImpl[A] def signum(implicit ev: Signed[A]): Int = macro FpFilter.signImpl[A]
… Macro City • Operator fusion – No intermediate
alloca9ons • In-‐line approxima9on + error bounds – Fast, Double arithme9c • Thunk becomes inner defs – Compile down to private methods
Turn this… (x + y).signum
… into this. val fpf$tmp$macro$38 = x.value; val fpf$apx$macro$39
= fpf$tmp$macro$38; val fpf$mes$macro$40 = java.lang.Math.abs(fpf$tmp$macro$38); def fpf$exact$macro$42 = spire.algebra.Field.apply[spire.math.Algebraic](Algebraic.AlgebraicAlgebra).fromDouble(fpf $tmp$macro$38); val fpf$tmp$macro$43 = y.value; val fpf$apx$macro$44 = fpf$tmp$macro$43; val fpf$mes$macro$45 = java.lang.Math.abs(fpf$tmp$macro$43); def fpf$exact$macro$47 = spire.algebra.Field.apply[Algebraic](Algebraic.AlgebraicAlgebra).fromDouble(fpf$tmp$macro $43); val fpf$apx$macro$48 = fpf$apx$macro$39.+(fpf$apx$macro$44); val fpf$mes$macro$49 = fpf$mes$macro$40.+(fpf$mes$macro$45); def fpf$exact$macro$51 = Algebraic.AlgebraicAlgebra.plus( fpf$exact$macro$42, fpf$exact$macro$47); val fpf$err$macro$52 = fpf$mes$macro$49.$times(1).$times(2.220446049250313E-16); if (fpf$apx$macro$48 > fpf$err$macro$52 && fpf$apx$macro$48 < Double.POSITIVE_INFINITY) 1 else if (fpf$apx$macro$48 < fpf$err$macro$52.unary_$minus && fpf$apx$macro$48 > Double.NEGATIVE_INFINITY) -1 else if (fpf$err$macro$52 == 0.0) 0 else Algebraic.AlgebraicAlgebra.signum(fpf$exact$macro$51)
Examples
2D Orienta2on
p q r
p q r
p q r RIGHT
p r q
p r q LEFT
p r q
p r q NO TURN
trait Turn[@spec A] { def apply( px: A, py: A,
qx: A, qy: A, rx: A, ry: A ): Int }
object FastTurn extends Turn[Double] { def apply( px: Double, py:
Double, qx: Double, qy: Double, rx: Double, ry: Double ): Int = signum { (qx - px) * (ry - py) - (rx - px) * (qy - py) } }
Accuracy of Fast Turn
object ExactTurn extends Turn[Double] { def apply( px: Double, py:
Double, qx: Double, qy: Double, rx: Double, ry: Double ): Int = { val pxa = Algebraic(px) val pya = Algebraic(py) val qxa = Algebraic(qx) val qya = Algebraic(qy) val rxa = Algebraic(rx) val rya = Algebraic(ry) ((qxa - pxa) * (rya - pya) – (rxa - pxa) * (qya - pya)).signum } }
10,000x Slower!
Let’s try again…
object FilteredTurn extends Turn[Double] { def apply( px: Double, py:
Double, qx: Double, qy: Double, rx: Double, ry: Double ): Int = { val pxf = FpFilter.exact[Algebraic](px) val pyf = FpFilter.exact[Algebraic](py) val qxf = FpFilter.exact[Algebraic](qx) val qyf = FpFilter.exact[Algebraic](qy) val rxf = FpFilter.exact[Algebraic](rx) val ryf = FpFilter.exact[Algebraic](ry) ((qxf - pxf) * (ryf - pyf) – (rxf - pxf) * (qyf - pyf)).signum } }
FilteredTurn Speed Rela9ve to FastTurn
Polynomial Root Finding
Polynomial[A]
Interval[A] Root
“Quadra2c Interval Refinement for Real Roots.” John AbboT.
QIR for short.
QIR (N=8)
QIR (N=8)
QIR (N=8)
QIR (N=8)
QIR (N=8)
QIR (N=8)
QIR (N=8)
QIR (N=8)
QIR (N=16)
QIR (N=16)
QIR (N=16)
QIR • Requires 2 polynomial evalua9ons – High precision
generally required • Very fast convergence (quadra9c) – Under some assump9ons • Occasionally fails when assump9ons not met – Fallsback to bisec9on!
QIR (N=8)
QIR (N=8)
QIR (N=8) FAILED!
Falls back to bisec9on…
Bisec9on
Bisec9on
Bisec9on
Bisec9on
Bisec9on
Bisec9on
Bisec9on
Bisec9on Requires only sign tests Converges
slowly, 1 bit at a 9me!
trait SignTest[A] { def apply( poly: Polynomial[A], x: A ):
Sign }
final class FilteredSignTest[@sp A: Semiring]( implicit A: IsAlgebraic[A] ) extends
SignTest[A] { def apply(poly: Polynomial[A], x: A): Sign = { val x0 = FpFilter(A.toDouble(x), A.toAlgebraic(x)) @tailrec def loop(acc: FpFilter[Algebraic], i: Int): Sign = if (i >= 0) { val c = poly.nth(i) val cftr = FpFilter(A.toDouble(c), A.toAlgebraic(c)) loop(cftr + acc * x0, i - 1) } else { Sign(acc.signum) } loop(FpFilter.approx(Algebraic.Zero), poly.degree) } }
Accuracy Using Double
Speed Up from Exact Sign Test Fast (d=8)
Fast (d=16) Fast (d=32) Filtered (d=8) Filtered (d=16) Filtered (d=16)
Summary • Works like any other number type
– Operator fusion + inlining within expressions • Speeds up predicates – Sign tests, comparisons, etc. • Near-‐Double performance – 2-‐4x in most cases h;p://github.com/9xxit/fpfilter-‐talk
Thanks! h;p://github.com/non/spire Tom Switzer @9xxit