Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Speed, Correctness, or Simplicity: Choose 3
Search
Tom Switzer
January 30, 2015
Programming
1
370
Speed, Correctness, or Simplicity: Choose 3
This talk introduces the floating point filter implementation in Spire (spire.math.FpFilter).
Tom Switzer
January 30, 2015
Tweet
Share
Other Decks in Programming
See All in Programming
Flutter On-device AI로 완성하는 오프라인 앱, 박제창 @DevFest INCHEON 2025
itsmedreamwalker
1
150
Go コードベースの構成と AI コンテキスト定義
andpad
0
140
Implementation Patterns
denyspoltorak
0
110
Deno Tunnel を使ってみた話
kamekyame
0
240
perlをWebAssembly上で動かすと何が嬉しいの??? / Where does Perl-on-Wasm actually make sense?
mackee
0
120
Cell-Based Architecture
larchanjo
0
140
ELYZA_Findy AI Engineering Summit登壇資料_AIコーディング時代に「ちゃんと」やること_toB LLMプロダクト開発舞台裏_20251216
elyza
2
590
AIコーディングエージェント(skywork)
kondai24
0
200
Canon EOS R50 V と R5 Mark II 購入でみえてきた最近のデジイチ VR180 事情、そして VR180 静止画に活路を見出すまで
karad
0
140
ZJIT: The Ruby 4 JIT Compiler / Ruby Release 30th Anniversary Party
k0kubun
0
270
AIエージェントの設計で注意するべきポイント6選
har1101
5
2.3k
Grafana:建立系統全知視角的捷徑
blueswen
0
190
Featured
See All Featured
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Highjacked: Video Game Concept Design
rkendrick25
PRO
0
250
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
120
Documentation Writing (for coders)
carmenintech
77
5.2k
Crafting Experiences
bethany
0
22
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
92
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
Exploring anti-patterns in Rails
aemeredith
2
200
How to Ace a Technical Interview
jacobian
281
24k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Transcript
Speed, Correctness, or Simplicity: Choose 3 Tom
Switzer @9xxit h;ps://github.com/9xxit/fpfilter-‐talk
Overview Floa9ng point is “good enough”…
most of the 9me.
Op9ons Use Double, live with the errors.
Use higher precision type, live with performance loss. But, there is a 3rd op9on…
Floa9ng Point Filters Use floa9ng point when you
can. Use higher precision when you can’t.
Err… Not So Simple Solve problem using floa9ng point
approxima9on… Maintain an error bound on approxima9on. Re-‐evaluate with exact type if error too large.
The Catch
What is the determinant of my matrix?
Not Good For: Minimizing Errors in Floa9ng Point Arithme9c
What is the sign of the determinant of
my matrix?
Good For: Making a Decision
FpFilter[A] Simple wrapper: FpFilter[Rational] Standard Opera2ons +, -‐,
*, /, .sqrt, etc Fast predictes signum, compare, isWhole, etc.
FpFilter[A] class FpFilter[A]( apx: Double, mes: Double, ind: Int,
exact: => A ) { … } floa9ng point approxima9on error bounds
FpFilter[A] class FpFilter[A]( apx: Double, mes: Double, ind: Int,
exact: => A ) { … } error bounds “Exact Geometric Computa2on Using Cascading.” Burnikel, Funke & Seel.
FpFilter[A] class FpFilter[A]( apx: Double, mes: Double, ind: Int,
exact: => A ) { … } error bounds thunk for higher precision Welcome to …
… Macro City def abs(implicit ev: Signed[A]): FpFilter[A] =
macro FpFilter.absImpl[A] def unary_- (implicit ev: Rng[A]) : FpFilter[A] = macro FpFilter.negateImpl[A] def +(rhs: FpFilter[A])(implicit ev: Semiring[A]): FpFilter[A] = macro FpFilter.plusImpl[A] def -(rhs: FpFilter[A])(implicit ev: Rng[A]): FpFilter[A] = macro FpFilter.minusImpl[A] def *(rhs: FpFilter[A])(implicit ev: Semiring[A]): FpFilter[A] = macro FpFilter.timesImpl[A] def /(rhs: FpFilter[A])(implicit ev: Field[A]): FpFilter[A] = macro FpFilter.divideImpl[A] def sqrt(implicit ev: NRoot[A]): FpFilter[A] = macro FpFilter.sqrtImpl[A] def <(rhs: FpFilter[A])(implicit ev0: Signed[A], ev1: Rng[A]): Boolean = macro FpFilter.ltImpl[A] def >(rhs: FpFilter[A])(implicit ev0: Signed[A], ev1: Rng[A]): Boolean = macro FpFilter.gtImpl[A] def <=(rhs: FpFilter[A])(implicit ev0: Signed[A], ev1: Rng[A]): Boolean = macro FpFilter.ltEqImpl[A] def >=(rhs: FpFilter[A])(implicit ev0: Signed[A], ev1: Rng[A]): Boolean = macro FpFilter.gtEqImpl[A] def ===(rhs: FpFilter[A])(implicit ev0: Signed[A], ev1: Rng[A]): Boolean = macro FpFilter.eqImpl[A] def signum(implicit ev: Signed[A]): Int = macro FpFilter.signImpl[A]
… Macro City • Operator fusion – No intermediate
alloca9ons • In-‐line approxima9on + error bounds – Fast, Double arithme9c • Thunk becomes inner defs – Compile down to private methods
Turn this… (x + y).signum
… into this. val fpf$tmp$macro$38 = x.value; val fpf$apx$macro$39
= fpf$tmp$macro$38; val fpf$mes$macro$40 = java.lang.Math.abs(fpf$tmp$macro$38); def fpf$exact$macro$42 = spire.algebra.Field.apply[spire.math.Algebraic](Algebraic.AlgebraicAlgebra).fromDouble(fpf $tmp$macro$38); val fpf$tmp$macro$43 = y.value; val fpf$apx$macro$44 = fpf$tmp$macro$43; val fpf$mes$macro$45 = java.lang.Math.abs(fpf$tmp$macro$43); def fpf$exact$macro$47 = spire.algebra.Field.apply[Algebraic](Algebraic.AlgebraicAlgebra).fromDouble(fpf$tmp$macro $43); val fpf$apx$macro$48 = fpf$apx$macro$39.+(fpf$apx$macro$44); val fpf$mes$macro$49 = fpf$mes$macro$40.+(fpf$mes$macro$45); def fpf$exact$macro$51 = Algebraic.AlgebraicAlgebra.plus( fpf$exact$macro$42, fpf$exact$macro$47); val fpf$err$macro$52 = fpf$mes$macro$49.$times(1).$times(2.220446049250313E-16); if (fpf$apx$macro$48 > fpf$err$macro$52 && fpf$apx$macro$48 < Double.POSITIVE_INFINITY) 1 else if (fpf$apx$macro$48 < fpf$err$macro$52.unary_$minus && fpf$apx$macro$48 > Double.NEGATIVE_INFINITY) -1 else if (fpf$err$macro$52 == 0.0) 0 else Algebraic.AlgebraicAlgebra.signum(fpf$exact$macro$51)
Examples
2D Orienta2on
p q r
p q r
p q r RIGHT
p r q
p r q LEFT
p r q
p r q NO TURN
trait Turn[@spec A] { def apply( px: A, py: A,
qx: A, qy: A, rx: A, ry: A ): Int }
object FastTurn extends Turn[Double] { def apply( px: Double, py:
Double, qx: Double, qy: Double, rx: Double, ry: Double ): Int = signum { (qx - px) * (ry - py) - (rx - px) * (qy - py) } }
Accuracy of Fast Turn
object ExactTurn extends Turn[Double] { def apply( px: Double, py:
Double, qx: Double, qy: Double, rx: Double, ry: Double ): Int = { val pxa = Algebraic(px) val pya = Algebraic(py) val qxa = Algebraic(qx) val qya = Algebraic(qy) val rxa = Algebraic(rx) val rya = Algebraic(ry) ((qxa - pxa) * (rya - pya) – (rxa - pxa) * (qya - pya)).signum } }
10,000x Slower!
Let’s try again…
object FilteredTurn extends Turn[Double] { def apply( px: Double, py:
Double, qx: Double, qy: Double, rx: Double, ry: Double ): Int = { val pxf = FpFilter.exact[Algebraic](px) val pyf = FpFilter.exact[Algebraic](py) val qxf = FpFilter.exact[Algebraic](qx) val qyf = FpFilter.exact[Algebraic](qy) val rxf = FpFilter.exact[Algebraic](rx) val ryf = FpFilter.exact[Algebraic](ry) ((qxf - pxf) * (ryf - pyf) – (rxf - pxf) * (qyf - pyf)).signum } }
FilteredTurn Speed Rela9ve to FastTurn
Polynomial Root Finding
Polynomial[A]
Interval[A] Root
“Quadra2c Interval Refinement for Real Roots.” John AbboT.
QIR for short.
QIR (N=8)
QIR (N=8)
QIR (N=8)
QIR (N=8)
QIR (N=8)
QIR (N=8)
QIR (N=8)
QIR (N=8)
QIR (N=16)
QIR (N=16)
QIR (N=16)
QIR • Requires 2 polynomial evalua9ons – High precision
generally required • Very fast convergence (quadra9c) – Under some assump9ons • Occasionally fails when assump9ons not met – Fallsback to bisec9on!
QIR (N=8)
QIR (N=8)
QIR (N=8) FAILED!
Falls back to bisec9on…
Bisec9on
Bisec9on
Bisec9on
Bisec9on
Bisec9on
Bisec9on
Bisec9on
Bisec9on Requires only sign tests Converges
slowly, 1 bit at a 9me!
trait SignTest[A] { def apply( poly: Polynomial[A], x: A ):
Sign }
final class FilteredSignTest[@sp A: Semiring]( implicit A: IsAlgebraic[A] ) extends
SignTest[A] { def apply(poly: Polynomial[A], x: A): Sign = { val x0 = FpFilter(A.toDouble(x), A.toAlgebraic(x)) @tailrec def loop(acc: FpFilter[Algebraic], i: Int): Sign = if (i >= 0) { val c = poly.nth(i) val cftr = FpFilter(A.toDouble(c), A.toAlgebraic(c)) loop(cftr + acc * x0, i - 1) } else { Sign(acc.signum) } loop(FpFilter.approx(Algebraic.Zero), poly.degree) } }
Accuracy Using Double
Speed Up from Exact Sign Test Fast (d=8)
Fast (d=16) Fast (d=32) Filtered (d=8) Filtered (d=16) Filtered (d=16)
Summary • Works like any other number type
– Operator fusion + inlining within expressions • Speeds up predicates – Sign tests, comparisons, etc. • Near-‐Double performance – 2-‐4x in most cases h;p://github.com/9xxit/fpfilter-‐talk
Thanks! h;p://github.com/non/spire Tom Switzer @9xxit