$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Speed, Correctness, or Simplicity: Choose 3
Search
Tom Switzer
January 30, 2015
Programming
1
360
Speed, Correctness, or Simplicity: Choose 3
This talk introduces the floating point filter implementation in Spire (spire.math.FpFilter).
Tom Switzer
January 30, 2015
Tweet
Share
Other Decks in Programming
See All in Programming
dotfiles 式年遷宮 令和最新版
masawada
1
710
30分でDoctrineの仕組みと使い方を完全にマスターする / phpconkagawa 2025 Doctrine
ttskch
3
790
TUIライブラリつくってみた / i-just-make-TUI-library
kazto
1
330
MAP, Jigsaw, Code Golf 振り返り会 by 関東Kaggler会|Jigsaw 15th Solution
hasibirok0
0
220
【CA.ai #3】ワークフローから見直すAIエージェント — 必要な場面と“選ばない”判断
satoaoaka
0
230
UIデザインに役立つ 2025年の最新CSS / The Latest CSS for UI Design 2025
clockmaker
18
7.1k
無秩序からの脱却 / Emergence from chaos
nrslib
2
12k
20 years of Symfony, what's next?
fabpot
2
330
Cap'n Webについて
yusukebe
0
110
組み合わせ爆発にのまれない - 責務分割 x テスト
halhorn
1
130
モデル駆動設計をやってみようワークショップ開催報告(Modeling Forum2025) / model driven design workshop report
haru860
0
250
開発に寄りそう自動テストの実現
goyoki
1
720
Featured
See All Featured
For a Future-Friendly Web
brad_frost
180
10k
Designing for Performance
lara
610
69k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
380
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Designing Experiences People Love
moore
143
24k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
Practical Orchestrator
shlominoach
190
11k
Fireside Chat
paigeccino
41
3.7k
The Language of Interfaces
destraynor
162
25k
Git: the NoSQL Database
bkeepers
PRO
432
66k
Become a Pro
speakerdeck
PRO
30
5.7k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
Transcript
Speed, Correctness, or Simplicity: Choose 3 Tom
Switzer @9xxit h;ps://github.com/9xxit/fpfilter-‐talk
Overview Floa9ng point is “good enough”…
most of the 9me.
Op9ons Use Double, live with the errors.
Use higher precision type, live with performance loss. But, there is a 3rd op9on…
Floa9ng Point Filters Use floa9ng point when you
can. Use higher precision when you can’t.
Err… Not So Simple Solve problem using floa9ng point
approxima9on… Maintain an error bound on approxima9on. Re-‐evaluate with exact type if error too large.
The Catch
What is the determinant of my matrix?
Not Good For: Minimizing Errors in Floa9ng Point Arithme9c
What is the sign of the determinant of
my matrix?
Good For: Making a Decision
FpFilter[A] Simple wrapper: FpFilter[Rational] Standard Opera2ons +, -‐,
*, /, .sqrt, etc Fast predictes signum, compare, isWhole, etc.
FpFilter[A] class FpFilter[A]( apx: Double, mes: Double, ind: Int,
exact: => A ) { … } floa9ng point approxima9on error bounds
FpFilter[A] class FpFilter[A]( apx: Double, mes: Double, ind: Int,
exact: => A ) { … } error bounds “Exact Geometric Computa2on Using Cascading.” Burnikel, Funke & Seel.
FpFilter[A] class FpFilter[A]( apx: Double, mes: Double, ind: Int,
exact: => A ) { … } error bounds thunk for higher precision Welcome to …
… Macro City def abs(implicit ev: Signed[A]): FpFilter[A] =
macro FpFilter.absImpl[A] def unary_- (implicit ev: Rng[A]) : FpFilter[A] = macro FpFilter.negateImpl[A] def +(rhs: FpFilter[A])(implicit ev: Semiring[A]): FpFilter[A] = macro FpFilter.plusImpl[A] def -(rhs: FpFilter[A])(implicit ev: Rng[A]): FpFilter[A] = macro FpFilter.minusImpl[A] def *(rhs: FpFilter[A])(implicit ev: Semiring[A]): FpFilter[A] = macro FpFilter.timesImpl[A] def /(rhs: FpFilter[A])(implicit ev: Field[A]): FpFilter[A] = macro FpFilter.divideImpl[A] def sqrt(implicit ev: NRoot[A]): FpFilter[A] = macro FpFilter.sqrtImpl[A] def <(rhs: FpFilter[A])(implicit ev0: Signed[A], ev1: Rng[A]): Boolean = macro FpFilter.ltImpl[A] def >(rhs: FpFilter[A])(implicit ev0: Signed[A], ev1: Rng[A]): Boolean = macro FpFilter.gtImpl[A] def <=(rhs: FpFilter[A])(implicit ev0: Signed[A], ev1: Rng[A]): Boolean = macro FpFilter.ltEqImpl[A] def >=(rhs: FpFilter[A])(implicit ev0: Signed[A], ev1: Rng[A]): Boolean = macro FpFilter.gtEqImpl[A] def ===(rhs: FpFilter[A])(implicit ev0: Signed[A], ev1: Rng[A]): Boolean = macro FpFilter.eqImpl[A] def signum(implicit ev: Signed[A]): Int = macro FpFilter.signImpl[A]
… Macro City • Operator fusion – No intermediate
alloca9ons • In-‐line approxima9on + error bounds – Fast, Double arithme9c • Thunk becomes inner defs – Compile down to private methods
Turn this… (x + y).signum
… into this. val fpf$tmp$macro$38 = x.value; val fpf$apx$macro$39
= fpf$tmp$macro$38; val fpf$mes$macro$40 = java.lang.Math.abs(fpf$tmp$macro$38); def fpf$exact$macro$42 = spire.algebra.Field.apply[spire.math.Algebraic](Algebraic.AlgebraicAlgebra).fromDouble(fpf $tmp$macro$38); val fpf$tmp$macro$43 = y.value; val fpf$apx$macro$44 = fpf$tmp$macro$43; val fpf$mes$macro$45 = java.lang.Math.abs(fpf$tmp$macro$43); def fpf$exact$macro$47 = spire.algebra.Field.apply[Algebraic](Algebraic.AlgebraicAlgebra).fromDouble(fpf$tmp$macro $43); val fpf$apx$macro$48 = fpf$apx$macro$39.+(fpf$apx$macro$44); val fpf$mes$macro$49 = fpf$mes$macro$40.+(fpf$mes$macro$45); def fpf$exact$macro$51 = Algebraic.AlgebraicAlgebra.plus( fpf$exact$macro$42, fpf$exact$macro$47); val fpf$err$macro$52 = fpf$mes$macro$49.$times(1).$times(2.220446049250313E-16); if (fpf$apx$macro$48 > fpf$err$macro$52 && fpf$apx$macro$48 < Double.POSITIVE_INFINITY) 1 else if (fpf$apx$macro$48 < fpf$err$macro$52.unary_$minus && fpf$apx$macro$48 > Double.NEGATIVE_INFINITY) -1 else if (fpf$err$macro$52 == 0.0) 0 else Algebraic.AlgebraicAlgebra.signum(fpf$exact$macro$51)
Examples
2D Orienta2on
p q r
p q r
p q r RIGHT
p r q
p r q LEFT
p r q
p r q NO TURN
trait Turn[@spec A] { def apply( px: A, py: A,
qx: A, qy: A, rx: A, ry: A ): Int }
object FastTurn extends Turn[Double] { def apply( px: Double, py:
Double, qx: Double, qy: Double, rx: Double, ry: Double ): Int = signum { (qx - px) * (ry - py) - (rx - px) * (qy - py) } }
Accuracy of Fast Turn
object ExactTurn extends Turn[Double] { def apply( px: Double, py:
Double, qx: Double, qy: Double, rx: Double, ry: Double ): Int = { val pxa = Algebraic(px) val pya = Algebraic(py) val qxa = Algebraic(qx) val qya = Algebraic(qy) val rxa = Algebraic(rx) val rya = Algebraic(ry) ((qxa - pxa) * (rya - pya) – (rxa - pxa) * (qya - pya)).signum } }
10,000x Slower!
Let’s try again…
object FilteredTurn extends Turn[Double] { def apply( px: Double, py:
Double, qx: Double, qy: Double, rx: Double, ry: Double ): Int = { val pxf = FpFilter.exact[Algebraic](px) val pyf = FpFilter.exact[Algebraic](py) val qxf = FpFilter.exact[Algebraic](qx) val qyf = FpFilter.exact[Algebraic](qy) val rxf = FpFilter.exact[Algebraic](rx) val ryf = FpFilter.exact[Algebraic](ry) ((qxf - pxf) * (ryf - pyf) – (rxf - pxf) * (qyf - pyf)).signum } }
FilteredTurn Speed Rela9ve to FastTurn
Polynomial Root Finding
Polynomial[A]
Interval[A] Root
“Quadra2c Interval Refinement for Real Roots.” John AbboT.
QIR for short.
QIR (N=8)
QIR (N=8)
QIR (N=8)
QIR (N=8)
QIR (N=8)
QIR (N=8)
QIR (N=8)
QIR (N=8)
QIR (N=16)
QIR (N=16)
QIR (N=16)
QIR • Requires 2 polynomial evalua9ons – High precision
generally required • Very fast convergence (quadra9c) – Under some assump9ons • Occasionally fails when assump9ons not met – Fallsback to bisec9on!
QIR (N=8)
QIR (N=8)
QIR (N=8) FAILED!
Falls back to bisec9on…
Bisec9on
Bisec9on
Bisec9on
Bisec9on
Bisec9on
Bisec9on
Bisec9on
Bisec9on Requires only sign tests Converges
slowly, 1 bit at a 9me!
trait SignTest[A] { def apply( poly: Polynomial[A], x: A ):
Sign }
final class FilteredSignTest[@sp A: Semiring]( implicit A: IsAlgebraic[A] ) extends
SignTest[A] { def apply(poly: Polynomial[A], x: A): Sign = { val x0 = FpFilter(A.toDouble(x), A.toAlgebraic(x)) @tailrec def loop(acc: FpFilter[Algebraic], i: Int): Sign = if (i >= 0) { val c = poly.nth(i) val cftr = FpFilter(A.toDouble(c), A.toAlgebraic(c)) loop(cftr + acc * x0, i - 1) } else { Sign(acc.signum) } loop(FpFilter.approx(Algebraic.Zero), poly.degree) } }
Accuracy Using Double
Speed Up from Exact Sign Test Fast (d=8)
Fast (d=16) Fast (d=32) Filtered (d=8) Filtered (d=16) Filtered (d=16)
Summary • Works like any other number type
– Operator fusion + inlining within expressions • Speeds up predicates – Sign tests, comparisons, etc. • Near-‐Double performance – 2-‐4x in most cases h;p://github.com/9xxit/fpfilter-‐talk
Thanks! h;p://github.com/non/spire Tom Switzer @9xxit