Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ファッションのコーディネートを自動生成してみた/FashionTech Talks Tokyo...
Search
tn1031
May 14, 2016
2
1.1k
ファッションのコーディネートを自動生成してみた/FashionTech Talks Tokyo #1 LT
tn1031
May 14, 2016
Tweet
Share
More Decks by tn1031
See All by tn1031
Outfit Generation and Style Extraction via Bidirectional LSTM and Autoencoder
tn1031
0
100
インタラクティブな属性操作が可能なファッションアイテム検索/attribute manipulation survey
tn1031
0
1.1k
Autoencoderを用いたOutfitからのスタイル抽出/style auto encoder
tn1031
0
12k
fashion_workshop_survey/Size Recommendation System for Fashion E-commerce
tn1031
0
240
画像を用いたファッションアイテム検索/Image Retrieval for Fashion
tn1031
0
5.3k
ファッションアイテム検索における深層学習の活用/Fashion Item Retrieval using Deep Learning
tn1031
0
2.2k
ディープラーニングでコーデを提案/FashionTechMeetup#4
tn1031
0
2.2k
KDD 2016勉強会/Images Don’t Lie: Transferring Deep Visual Semantic Features to Large-Scale Multimodal Learning to Rank
tn1031
0
1k
Fashion Tech x Machine Learning/twm_fashion_ml
tn1031
5
5.6k
Featured
See All Featured
Navigating Team Friction
lara
183
14k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
43
6.6k
Art, The Web, and Tiny UX
lynnandtonic
296
20k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
6.9k
The Cult of Friendly URLs
andyhume
78
6k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
167
49k
VelocityConf: Rendering Performance Case Studies
addyosmani
325
24k
GraphQLとの向き合い方2022年版
quramy
43
13k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
5
140
Docker and Python
trallard
40
3k
GraphQLの誤解/rethinking-graphql
sonatard
66
9.9k
Transcript
ϑΝογϣϯͷίʔσΟωʔτ Λࣗಈੜͯ͠Έͨ 2016/5/13 FashionTech Talks Tokyo #1 @tn1031
ࣗݾհ ▸ தଜ ຏ / @tn1031 ▸ σʔλαΠΤϯςΟετ ▸ SIer(2)
-> VASILY ▸ ػցֶशΛઐ߈ ▸ ϊϯύϥϝτϦοΫϕΠζ ▸ มϕΠζ ▸ MCMC, SMC ▸ FashionؔͷSlide ▸ https://speakerdeck.com/tn1031/fashion-tech-meetup-number-2-lt ▸ https://speakerdeck.com/tn1031/twm-fashion-ml 2 @tn1031
VASILYͱiQONʹ͍ͭͯ
VASILYͱiQONʹ͍ͭͯ ϑΝογϣϯΞϓϦʮiQONʯΛӡӦ͍ͯ͠·͢ 4
VASILYͱiQONʹ͍ͭͯ Ϣʔβ͕ϑΝογϣϯΞΠςϜ ΛΈ߹ΘͤͯίʔσΛ࡞ΕΔ 5
VASILYͱiQONʹ͍ͭͯ ؾʹೖͬͨΞΠςϜͦͷͰECαΠτʹඈΜͰ͓ങ͍Ͱ͖Δ 6 ఏܞECαΠτ
VASILYͱiQONʹ͍ͭͯ ຊதͷECαΠτͷใΛΫϩʔϦϯά 7
VASILYͱiQONʹ͍ͭͯ iQON͕ѻ͏σʔλͷྫɿίʔσΟωʔτ 8 ίʔσ ‣ ΘΕͨΞΠςϜ ‣ ΞΠςϜͷϒϥϯυ ‣ ϨΠΞτ
‣ λΠτϧ ‣ ίϝϯτ ‣ λά ‣ ɾɾɾ
ίʔσΟωʔτΛ࡞ͬͯΈΔ
ίʔσΟωʔτΛ࡞ͬͯΈΔ iOSɿhttps://itunes.apple.com/jp/app/fasshonkodineto-iqon-aikon/id497264307 Androidɿhttps://play.google.com/store/apps/details?id=jp.vasily.iqon&hl=ja ϒϥβɿhttps://www.iqon.jp/edit/ 10 ΞϓϦ ϒϥβ
ίʔσΟωʔτΛ࡞ͬͯΈΔ 1. ΞΠςϜΛબͯ͠ 2. ஔ 11 ΞϓϦ ϒϥβ ᶃ ɹ
ᶄ ɹ ᶃ ɹ ᶄ ɹ
ίʔσΟωʔτΛ࡞ͬͯΈΔ 1. ΞΠςϜΛબͯ͠ 2. ஔ 12 ΞϓϦ ϒϥβ ͜Ε͚ͩ
ίʔσΟωʔτΛ࡞ͬͯΈΔ 1. ΞΠςϜΛબͯ͠ 2. ஔ 13 ΞϓϦ ϒϥβ ͜Ε͚ͩ ͳΜͰ͕͢ɺ
ίʔσΟωʔτΛ࡞ͬͯΈΔ 14 ϫϯϐʔε 15ΞΠςϜ x 335ϖʔδ εΧʔτ 15ΞΠςϜ x 256ϖʔδ
ύϯϓε 15ΞΠςϜ x 1108ϖʔδ ɾ ɾ ɾ
ίʔσΟωʔτΛ࡞ͬͯΈΔ 15 ‣ ΧςΰϦɿ ɹ70ΧςΰϦ ‣ 1ϖʔδ͋ͨΓͷΞΠςϜɿ ɹɹ15ΞΠςϜ ‣ ֤ΧςΰϦͷϖʔδɿ
ɹेʙઍ(!?)
ίʔσΟωʔτΛ࡞ͬͯΈΔ 16 ΞΠςϜଟ͗͢ɽɽɽ
ίʔσΟωʔτΛ࡞ͬͯΈΔ 17 ίʔσΟωʔτΛ ͬͱָʹ࡞Γ͍ͨ ࣗಈੜ͠Α͏ʂ
ίʔσΟωʔτΛࣗಈੜͯ͠ΈΔ
ίʔσࣗಈੜγεςϜͷ࡞Γํ 1. ΞΠςϜwordɺίʔσΟωʔτdocument 19 (w1, w2, . . . ,
wn) (I1, I2, . . . , In) ίʔσΟωʔτΛจॻͱΈͳ͠ɺɹɹɹɹɹɹ ςΩετϚΠχϯάͷख๏Λద༻͢Δ จॻ ୯ޠྻ ΞΠςϜྻ ίʔσΟωʔτ
ίʔσࣗಈੜγεςϜͷ࡞Γํ 2. RNNʹಥͬࠐΉ 20 http://qiita.com/moji_ai/items/87afd4a433dc655d8cfd inputɿΞΠςϜIDྻ outputɿ࣍ͷΞΠςϜͷ༧ଌ֬ RNNςΩετ࣌ܥྻσʔλͷղੳʹ Α͘༻͍ΒΕΔχϡʔϥϧωοτϫʔΫ outputɿ࣍ͷΞΠςϜͷ༧ଌ֬
ίʔσࣗಈੜγεςϜͷ࡞Γํ 3. ֶश͕͏·͍͘͘Α͏ʹفΔ 21 iteration perplexity
ίʔσࣗಈੜγεςϜͷ࡞Γํ 22 Ͱ͖·ͨ͠ɻ
ࣗಈੜͷ݁Ռ
ࣗಈੜΞϧΰϦζϜͰબΕͨΞΠςϜ 24
ࣗಈੜΞϧΰϦζϜͰબΕͨΞΠςϜ 25
ࣗಈੜΞϧΰϦζϜͰબΕͨΞΠςϜ 26
ॴײ·ͱΊͳͲ
ॴײ 28 ‣ Կʹ͏ͷʁ ‣ ίʔσੜ࣌ͷਪનγεςϜ(༧ଌมͷΠϝʔδ) ‣ ͳΜͰRNNʁ ‣ ΞΠςϜྻ͔͠Θͳ͍ͳΒɺͨͩͷ͖݅֬ΛٻΊΔ
ͳͷͰɺτϐοΫϞσϧͰྑͦ͞͏ ‣ ը૾Λ͍͍ͨ ‣ ίʔσΟωʔτݟ͕ͨେࣄ ‣ ը૾Λѻ͑ΔΑ͏ʹNNΛ֦ு͢Δඞཁ͕͋Δ
·ͱΊ ‣ RNNΛ༻͍ͯίʔσΟωʔτΛࣗಈੜͨ͠ 29 ‣ ը૾ͦͷଞͷଐใΛͬͯϞσϧΛߴԽ ‣ ΞΠςϜͷஔ·ͰࣗಈԽ ‣ ίʔσΟωʔτͷςΠετͷ੍ޚ
‣ ϢʔβʹύʔιφϥΠζͨ͠ਪનγεςϜ ·ͱΊ Future Works
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ We are hiring !! ڵຯͷ͋ΔํͷೖࣾɾΠϯλʔϯΛ͓͓ͪͯ͠Γ·͢ʂʂ http://vasily.jp/