Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Fashion Tech x Machine Learning/twm_fashion_ml
Search
tn1031
April 16, 2016
5
5.6k
Fashion Tech x Machine Learning/twm_fashion_ml
tn1031
April 16, 2016
Tweet
Share
More Decks by tn1031
See All by tn1031
Outfit Generation and Style Extraction via Bidirectional LSTM and Autoencoder
tn1031
0
110
インタラクティブな属性操作が可能なファッションアイテム検索/attribute manipulation survey
tn1031
0
1.1k
Autoencoderを用いたOutfitからのスタイル抽出/style auto encoder
tn1031
0
12k
fashion_workshop_survey/Size Recommendation System for Fashion E-commerce
tn1031
0
250
画像を用いたファッションアイテム検索/Image Retrieval for Fashion
tn1031
0
5.4k
ファッションアイテム検索における深層学習の活用/Fashion Item Retrieval using Deep Learning
tn1031
0
2.3k
ディープラーニングでコーデを提案/FashionTechMeetup#4
tn1031
0
2.2k
KDD 2016勉強会/Images Don’t Lie: Transferring Deep Visual Semantic Features to Large-Scale Multimodal Learning to Rank
tn1031
0
1k
ファッションのコーディネートを自動生成してみた/FashionTech Talks Tokyo #1 LT
tn1031
2
1.1k
Featured
See All Featured
Adopting Sorbet at Scale
ufuk
73
9.1k
How to Think Like a Performance Engineer
csswizardry
22
1.2k
The World Runs on Bad Software
bkeepers
PRO
66
11k
Facilitating Awesome Meetings
lara
50
6.1k
Fireside Chat
paigeccino
34
3.1k
Practical Orchestrator
shlominoach
186
10k
KATA
mclloyd
29
14k
Why Our Code Smells
bkeepers
PRO
335
57k
RailsConf 2023
tenderlove
29
940
jQuery: Nuts, Bolts and Bling
dougneiner
61
7.6k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
The Cost Of JavaScript in 2023
addyosmani
46
7k
Transcript
Fashion Techͷ͋Μͪΐ͜ -ػցֶशฤ- 2016/4/16 TokyoWebMining #53 @tn1031
Agenda 1. Fashion x Technologyͷࣄྫհ 2. Fashionͷݚڀࣄྫ 3. ·ͱΊ 2
ࣗݾհ ▸ தଜ ຏ / @tn1031 ▸ σʔλαΠΤϯςΟετ ▸ SIer(2)
-> VASILY ▸ ػցֶशΛઐ߈ ▸ ϊϯύϥϝτϦοΫϕΠζ ▸ มϕΠζ ▸ ϊϯύϥຊָ͕͠Έ ▸ TokyoWebMiningͷొஃ2ճ ▸ લճɺը૾ೝࣝʹ͍ͭͯൃද 3 @tn1031 ਓೳɹɹɹɹɹ झຯͰᅂΉఔ
VASILYͱiQONʹ͍ͭͯ
VASILYͱiQONʹ͍ͭͯ ϑΝογϣϯΞϓϦʮiQONʯΛӡӦ͍ͯ͠·͢ 5
VASILYͱiQONʹ͍ͭͯ Ϣʔβ͕ϑΝογϣϯΞΠςϜ ΛΈ߹ΘͤͯίʔσΛ࡞ΕΔ 6
VASILYͱiQONʹ͍ͭͯ ؾʹೖͬͨΞΠςϜͦͷͰECαΠτʹඈΜͰ͓ങ͍Ͱ͖Δ 7 ఏܞECαΠτ
VASILYͱiQONʹ͍ͭͯ ຊதͷECαΠτͷใΛΫϩʔϦϯά 8
VASILYͱiQONʹ͍ͭͯ iQON͕ѻ͏σʔλͷྫɿίʔσΟωʔτ 9 ίʔσ ‣ ΘΕͨΞΠςϜ ‣ ΞΠςϜͷϒϥϯυ ‣ ϨΠΞτ
‣ λΠτϧ ‣ ίϝϯτ ‣ λά ‣ ɾɾɾ
Fashion x Technologyͷࣄྫհ
Fashion x Technologyʁ ‣ ϑΝογϣϯۀքɺ ‣ Ϗδωεͷن͕େ͖͍ ‣ ੜ׆ʹ͔ܽͤͳ͍࢈ۀ ‣
IT͕ਁಁ͍ͯ͠ͳ͍ 11 ϑΝογϣϯۀքʹɹɹɹɹɹ ITͷ͕དྷͯΔΒ͍͠
Fashioning Data: A 2015 Update Data Innovations from the Fashion
Industry 12 http://www.oreilly.com/data/free/fashioning-data.csp Έ͍ͨͳ͜ͱ͕ॻ͍ͯ͋Δຊ
Fashion x Technologyͷࣄྫ ςΫϊϩδʔΛ׆͔ͨ͠αʔϏε͕ଟଘࡏ͢Δ 13 WHERETOGET ‣ http://wheretoget.it/ Styloko ‣
https://www.styloko.com/ deepomatic ‣ https://www.deepomatic.com/
ࣄྫ1:WHERETOGE ‣ ϑΝογϣϯΞΠςϜͷը૾Λೖྗ͢ΔͱɺͦͷΞΠςϜ͕Ͳ͜Ͱख ʹೖΔͷ͔ڭ͑ͯ͘ΕΔαʔϏε ‣ ػց͕ݕࡧ͢ΔͷͰͳ͘ɺ͍ͬͯΔਓ͕ڭ͑ͯ͘ΕΔ 14
ࣄྫ2:Styloko ‣ ը૾Λೖྗ͢Δͱɺ৭ฑ͕Α͘ࣅͨΞΠςϜΛ୳ͯ͘͠ΕΔ ‣ ೖྗ(ͨͿΜ)Ͱͳͯ͘ྑ͍ 15
ࣄྫ3:deepomatic ‣ ը૾͔ΒϑΝογϣϯ ΞΠςϜΛݕग़͠ɺը ૾ݕࡧͰಉ͡ΞΠςϜ Λฦ͢ 16
Fashion x Technologyͷࣄྫ ‣ ը૾Λѻ͏αʔϏε͕ଟ͍ ‣ Λങ͏্Ͱ͔ܽͤͳ͍ཁૉ ‣ ݕࡧύʔιφϥΠζͷधཁ͕͋Δ ‣
େྔͷΞΠςϜ͔ΒతͷΞΠςϜΛ୳͢ ‣ ݸਓͷझΛөͨ͠ϥϯΩϯά 17 ϑΝογϣϯͱػցֶशͷ ੑେ͖͍
Fashionͷݚڀࣄྫ
FashionΛରʹͨ͠ݚڀͰѻΘΕΔ 19 ը૾ܥͷख๏ϑΝογϣϯσʔλͱͷੑ͕ߴ͍ɻҎԼͷ3߲͕ओྲྀͳҹɻ ΞΠςϜݕग़ ύʔε ྖҬׂ ϑΝογϣϯ ΞΠςϜݕࡧ Ϩίϝϯυ ςʔϚ
λεΫ ϑΝογϣϯྖҬͷద༻ ը૾͔ΒΞΠςϜʹ֘͢ΔՕॴΛಛఆ͠ɺ ύʔεΧςΰϦͷผΛߦ͏ ѻ͏ը૾͕ݶఆ͞ΕΔҝɺ ࣄલࣝΛ׆༻Ͱ͖Δ ΫΤϦʹҰகɾྨࣅ͢Δ ΞΠςϜΛఏࣔ͢Δ ΤοδΛ༻͍ͨΞΠςϜͷ۠ผ͕ࠔͳҝɺ ৭ฑૉࡐͷใΛөͰ͖ΔϞσϧ͕ ඞཁ ߦಈσʔλΞΠςϜؒྨࣅΛར༻ͯ͠ɺ ϢʔβͷΞΠςϜఏࣔΛ࠷దԽ͢Δ ߦಈσʔλͷଞʹΞΠςϜͷը૾ಛྔ ྲྀߦΛϞσϧʹΈࠐΉ͜ͱ͕Ͱ͖Δ
ΞΠςϜݕग़ ‣ http://arxiv.org/abs/1411.5319 ‣ http://arxiv.org/abs/1603.07063 ‣ http://vision.is.tohoku.ac.jp/~kyamagu/papers/yamaguchi_cvpr2012.pdf 20 ը૾͔ΒΞΠςϜʹ֘͢ΔྖҬɾۣܗΛΓग़͠ɺΧςΰϦผΛߦ͏ɻ ΞΠςϜ͕ݱΕΔ࠲ඪʹنଇੑ͕͋Γɺ͜ͷੑ࣭ΛͲͷ༷ʹֶशʹར༻͢Δ͔͕ϙΠϯτɻ
Fashion Apparel Detection: The Role of Deep Convolutional Neural Network
and Pose-dependent Priors (WACV 2016) ‣ ϑΝογϣϯΞΠςϜͷݕग़ ‣ ண͍ͯΔͷ͚ͩͰͳ͘ɺʹ͚Δͷରɹɹɹɹɹɹɹɹɹ (hat, glasses, bag, pants, shoes and so on.) ‣ ֶशʹDeep Convolutional Neural NetworkΛར༻ ‣ ֤ΞΠςϜ͕ग़ݱ͍͢͠ҐஔΛࣄલࣝͱֶͯ͠शʹ׆༻͢ΔΈ ΛఏҊ 21 ֓ཁ Fashion Apparel Detection: The Role of Deep Convolutional Neural Network and Pose-dependent Priors http://arxiv.org/abs/1411.5319
Fashion Apparel Detection: The Role of Deep Convolutional Neural Network
and Pose-dependent Priors (WACV 2016) 22 Contribution ‣ domain-specific priorsͳࣄલใΛ׆༻ֶͨ͠शํ๏ ΛఏҊͨ͠ ‣ ϋϯυόοάखटखͷۙ͘ʹ͋Γɺۺͷۙ͘ʹग़ݱ͠ қ͍ ‣ ΞΠςϜͷେ͖͍ࣸͬͯ͞Δਓͷେ͖͞ʹൺྫ͢Δ ‣ ϙʔζݕग़ΛߦͬͯΞΠςϜͷݕग़ਫ਼ΛߴΊͨ ‣ ΞΠςϜީิྖҬͷ࠲ඪͱϙʔζݕग़ͷग़ྗΛjoint͍ͤͯ͞Δ
Fashion Apparel Detection: The Role of Deep Convolutional Neural Network
and Pose-dependent Priors (WACV 2016) 23 Overview of the proposed algorithm ‣ ΞΠςϜީิྖҬ͔Βͷಛநग़CNNͰߦ͏ ‣ ͦΕͧΕͷΫϥεͷग़ݱ֬Λ1-vs-rest SVMsͰݟੵΔ ‣ ϙʔζਪఆʹجͮ͘ҐஔใʹΑͬͯ֬Λิਖ਼͢Δ ‣ Non-Maximum suppressionͰ͑ͯ࠷ऴతͳग़ྗͱ͢Δ
Fashion Apparel Detection: The Role of Deep Convolutional Neural Network
and Pose-dependent Priors (WACV 2016) 24 Model Object Proposal ‣ ը૾͔ΒΞΠςϜྖҬͷީิΛऔಘ͢Δ ‣ ͦΕͧΕͷީิྖҬʹ͍ͭͯΞΠςϜͷ༗ແΛผ ثͰॲཧͯ͠false positiveΛݮΒ͢ 0CKFDU1SPQPTBM *NBHF'FBUVSF&YUSBDUJPO 47.USBJOJOH 1SPCBCJMJTUJDGPSNVMBUJPO "QQFBSBODFCBTFE1PTUFSJPS (FPNFUSJD1SJPST Image Feature Extraction ‣ ֶशࡁΈCaffeNetΛ༻͍Δ ‣ ग़ྗͷखલͷग़ྗ4096࣍ݩͷϕΫτϧΛಛྔͱ ͢Δ
Fashion Apparel Detection: The Role of Deep Convolutional Neural Network
and Pose-dependent Priors (WACV 2016) 25 Model Appearance-based Posterior ‣ SVMͷύϥϝʔλΛར༻ͯ͠posteriorΛܭࢉ͢Δ ‣ ɹ ‣ λ͕ผਫ਼ʹޮ͍ͯ͘ΔͷͰɺ࠷ऴతͳ݁Ռʹجͮ ͖λΛνϡʔχϯά͢Δ 0CKFDU1SPQPTBM *NBHF'FBUVSF&YUSBDUJPO 47.USBJOJOH 1SPCBCJMJTUJDGPSNVMBUJPO "QQFBSBODFCBTFE1PTUFSJPS (FPNFUSJD1SJPST SVM training ‣ ΞΠςϜͷΫϥε(bag,hat,...)ͦΕͧΕʹ͍ͭͯઢܗ SVMͰ2ผΛߦ͏
Fashion Apparel Detection: The Role of Deep Convolutional Neural Network
and Pose-dependent Priors (WACV 2016) 26 Model 0CKFDU1SPQPTBM *NBHF'FBUVSF&YUSBDUJPO 47.USBJOJOH 1SPCBCJMJTUJDGPSNVMBUJPO "QQFBSBODFCBTFE1PTUFSJPS (FPNFUSJD1SJPST Geometric Priors ‣ Ґஔใʹؔ͢ΔpriorΛ2छྨఆٛ͢Δ ‣ ۣܗͷपʹ͍ͭͯɺ ‣ ۣܗͷΞεϖΫτൺʹ͍ͭͯɺ ‣ ۣܗͷத৺࠲ඪʹ͍ͭͯɺ Probabilistic formulation ‣ Appearance-based PosteriorͱGeometric Priors͔ ΒPosteriorΛܭࢉ͢Δ
Fashion Apparel Detection: The Role of Deep Convolutional Neural Network
and Pose-dependent Priors (WACV 2016) 27 Result
ݕࡧ ‣ http://cseweb.ucsd.edu/~chunbinlin/papers/www16demo.pdf ‣ http://arxiv.org/pdf/1505.07922.pdf ‣ http://www.iis.sinica.edu.tw/papers/song/18378-F.pdf 28 طଘͷΞϧΰϦζϜΛϑΝογϣϯʹಛԽͤ͞ΔͨΊɺฑૉࡐͳͲͷՃใΛ༻͍Δɻ ΞΠςϜؒͷؔΛฏ໘ʹϚοϐϯάͯ͠ΈΔͱָ͍͠ɻ
Fashionista: A Fashion-aware Graphical System for Exploring Visually Similar Items
(WWW 2016) ‣ ϑΝογϣϯΞΠςϜͷݕࡧγεςϜ ‣ ࢹ֮తʹྨࣅ͍ͯ͠ΔΞΠςϜͷݕࡧγεςϜΛ։ൃͨ͠ ‣ graphical interfaceʹͩ͜ΘΓ͕͋Δ ‣ ྲྀߦΓΛ౿·্͑ͨͰࣅ͍ͯΔΞΠςϜΛఏࣔ͢Δ ‣ ֶशʹ༻͍Δใ ‣ ը૾ಛྔ ‣ AmazonͷߪങσʔλͱλΠϜελϯϓ 29 ֓ཁ Fashionista: A Fashion-aware Graphical System for Exploring Visually Similar Items http://cseweb.ucsd.edu/~chunbinlin/papers/www16demo.pdf
Fashionista: A Fashion-aware Graphical System for Exploring Visually Similar Items(WWW
2016) 30 Contribution ‣ ࢹ֮తʹྨࣅ͍ͯ͠ΔΞΠςϜΛ୳ͤΔgraphical interface ”Fashionista”Λ։ൃͨ͠ ‣ ࢹ֮తͳใ(ը૾ಛྔ)Λྨࣅܭࢉʹར༻͢Δ ‣ ”Fashionista”τϨϯυΛՄࢹԽͯ͠ࠓྲྀߦ͍ͬͯΔΞΠςϜΛ୳͠ ͍ͯ͘͢͠Δ ‣ Amazon͔Β11ʹΘͨͬͯɺ0.6 million items, 1.8 million users, and 3.2 million user-item
Fashionista: A Fashion-aware Graphical System for Exploring Visually Similar Items(WWW
2016) 31 A screenshot of Fashionista http://132.239.95.211:8080/demowww/index.jsp
Fashionista: A Fashion-aware Graphical System for Exploring Visually Similar Items(WWW
2016) 32 Architecture of Fashionista
Fashionista: A Fashion-aware Graphical System for Exploring Visually Similar Items(WWW
2016) 33 Fashion Learner 5SBJOJOH%BUB ‣ Amazonͷߪങσʔλɹɹ (user, item, timestamp) ‣ pretrained CNN͔Βɹɹɹɹ ը૾ಛྔΛநग़ 'BTIJPO-FBSOFS ,OPXMFEHF ‣ ΞΠςϜಉ͕࢜ࣅ͍ͯΔʗࣅͯ ͍ͳ͍ͷใ ‣ tŖSNEͰѹॖͯ͠ฏ໘ʹɹ Ϛοϐϯά ‣ ΞΠςϜͷ͓͠ΌΕͷਪҠ ‣ Matrix Factorizationϕʔεͷख ๏ͰɺߦಈσʔλʹՃ͑ͯը૾ ಛྔΛར༻͢Δ ‣ ҎԼͷ࣌ܥྻใΛѻ͏ ‣ ΞΠςϜͷັྗʹ͍ͭͯͷ࣌ ؒਪҠ ‣ ࢹ֮తใʹର͢ΔϢʔβ ͷԠͷਪҠ ‣ ϢʔβຖͷᅂͷมԽ
Ϩίϝϯυ ‣ http://www.lv-nus.org/papers/2012/magic_closet-MM12.pdf ‣ http://labs.ebay.com/sites/default/files/14_fashionrecommender_kdd_ebayresearchlabs.pdf ‣ http://arxiv.org/abs/1506.04757 34 ߦಈσʔλ͚ͩͰͳ͘ɺΞΠςϜͷը૾ಛྔྲྀߦΛөͤͨ͞ΞϧΰϦζϜ͕ఏҊ͞Ε͍ͯΔɻ Ϣʔβͷझ͚ͩͰͳ͘ɺΞΠςϜಉ࢜ͷ૬ੑΛߟྀͨ͠γεςϜଘࡏ͢Δɻ
“Hi, Magic Closet, Tell Me What toWear!”(ACM MM 2012) ‣
occasionʹର͢ΔϨίϝϯσʔγϣϯ ‣ Weddingσʔτͱ͍ͬͨoccasionΛೖྗ͢Δͱɺࣗ ͷϑΥτΞϧόϜΦϯϥΠϯγϣοϓ͔ΒదͳΛ ୳ͯ͠ఏҊͯ͘͠ΕΔ ‣ Magic Closet͕ղ͘2छྨ ‣ wear properly(ଐੑ)ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹ ʮόϯέοτʹύϯπεʔπΑΓυϨε͕ɹద͍ͯ͠Δʯ ‣ wear aesthetically(ඒ͠͞)ɹɹɹɹɹɹɹɹɹɹɹɹɹɹ ʮ͍TγϟπʹΑΓനͷύϯπ͕ద͍ͯ͠Δʯ 35 ֓ཁ “Hi, Magic Closet, Tell Me What to Wear!" http://www.lv-nus.org/papers/2012/magic_closet-MM12.pdf
“Hi, Magic Closet, Tell Me What toWear!”(ACM MM 2012) 36
Magic ClosetͷΈ
“Hi, Magic Closet, Tell Me What toWear!”(ACM MM 2012) 37
Magic ClosetͷΈ TDFOBSJPɿPDDBTJPOΛࢦఆ ʮ*BNGPSBDPOGFSFODF QMFBTF SFDPNNFOETPNFUIJOHGSPNNZ QIPUPBMCVN ʯ TDFOBSJPɿPDDBTJPOͱ্ͷΛࢦఆ ʮ*BNHPJOHPOBEBUF QMFBTFpOE TPNFUIJOHUPNBUDIXJUIUIJT5 TIJSU ʯ
“Hi, Magic Closet, Tell Me What toWear!”(ACM MM 2012) 38
Magic ClosetͷΈ ز͔ͭͷ؍͔ΒϨίϝϯυΛߦ͏ B "UUSJCVUFWT0DDBTJPO.PEFM ‣ ͷଐੑͱPDDBTJPOͷ૬ੑ C "UUSJCVUFWT"UUSJCVUF.PEFM ‣ ͷଐੑಉ࢜ͷ૬ੑ ্ͱԼ D $MPUIJOH"UUSJCVUF&TUJNBUJPO ‣ ͷଐੑͷਪఆ
“Hi, Magic Closet, Tell Me What toWear!”(ACM MM 2012) 39
Magic ClosetͷΈ ݁Ռͷग़ྗ PDDBTJPOΛࢦఆͨ͠߹ ྫɿDPOGFSFODF ‣ దͳ ͷΈ߹Θͤ ΛఏҊ PDDBTJPOͱ্ͷΛࢦఆͨ͠߹ ྫɿ EBUF 5TIJSU ‣ ࢦఆ͓ͨ͠ΑͼPDDBTJPOͱ૬ੑͷྑ͍ ΛఏҊ
“Hi, Magic Closet, Tell Me What toWear!”(ACM MM 2012) ‣
ҎԼͷ2ͭͷʹ࠷ॳʹऔΓΜͩ ‣ ϑΥτΞϧόϜ͔Βoccasionʹదͨ͠Λ୳ͯ͠ਪન͢Δ ‣ ΫΤϦͷΞΠςϜoccasionʹ૬ੑͷྑ͍ΞΠςϜΛECαΠτ͔Β୳͢ ‣ What-to-Wear (WoW)σʔληοτΛߏஙͨ͠ ‣ 24,417ຕɺ࣌࠷େڃΒ͍͠ ‣ occasionͱͷ૬ੑΛಉ࣌ʹֶश͢Δlatent SVMΛఏҊͨ͠ 40 Contribution
“Hi, Magic Closet, Tell Me What toWear!”(ACM MM 2012) ‣
ֶशσʔλ ‣ ‣ :্/Լͷը૾ಛྔ ʗ :্ͷଐੑ(৭ͱ͔)ʗ :Լͷଐੑ ʗ :occasionΧςΰϦ 41 Model ( x, au, al, o ) ‣ Recommendation function x al au o
“Hi, Magic Closet, Tell Me What toWear!”(ACM MM 2012) 42
Model 'FBUVSFWT0DDBTJPO ‣ ը૾ಛྔͱoccasion ‣ ઢܗϞσϧ 'FBUVSFWT"UUSJCVUF ‣ ը૾ಛྔͱͷଐੑ ‣ ઢܗϞσϧ "UUSJCVUFWT"UUSJCVUF ‣ ͷଐੑͷΈ߹Θͤ ͷ૬ੑ ‣ ্ͱԼͷϖΞ ʹ͍ͭͯܭࢉ͢Δ ‣ ্Լͷͷ૬ੑʹ͍ͭ ֶͯश͢Δ "UUSJCVUFWT0DDBTJPO ‣ ͷଐੑͱoccasion ‣ ઢܗϞσϧ ‣ occasionʹదͨ͠ Λֶश͢Δ
“Hi, Magic Closet, Tell Me What toWear!”(ACM MM 2012) ‣
ӡ༻࣌ ‣ occasionʹదͨ͠ͷϨίϝϯυ ‣ ԼgivenͰ্ͷͷϨίϝϯυ ‣ ͜͜Ͱɺ 43 Model x ⇤ = arg maxx 2 X t fw(x, o) x ⇤ u = arg maxxu 2 X t u fw([xu; xl], o) fw(x, o) = max au,al w T (x, au, al, o)
“Hi, Magic Closet, Tell Me What toWear!”(ACM MM 2012) 44
Result ΞΠςϜͷଐੑ ಉ࢜ͷ૬ੑ ଐੑͱoccasionͷ૬ੑ
“Hi, Magic Closet, Tell Me What toWear!”(ACM MM 2012) 45
Result
·ͱΊ
·ͱΊ ‣ Fashion x Technology͕Γ্͕͍ͬͯΔ ‣ TechnologyΛ׆༻ͨ͠αʔϏε͕ଟଘࡏ͢Δ ‣ ݚڀ։ൃΜʹߦΘΕ͍ͯΔ 47
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠
ࢀߟ ‣ http://cs229.stanford.edu/proj2009/McDanielsWorsley.pdf ‣ http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Simo- Serra_Neuroaesthetics_in_Fashion_2015_CVPR_paper.pdf ‣ http://labs.ebay.com/sites/default/files/13_stylefinder_cvpr_ebayresearchlabs.pdf ‣ http://vision.is.tohoku.ac.jp/~kyamagu/papers/yamaguchi_cvpr2012.pdf
‣ http://arxiv.org/abs/1411.5319 ‣ http://labs.ebay.com/sites/default/files/14_fashionrecommender_kdd_ebayresearchlabs.pdf ‣ http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/ Chen_Deep_Domain_Adaptation_2015_CVPR_paper.pdf ‣ http://arxiv.org/abs/1603.07063 ‣ http://arxiv.org/abs/1506.04757 ‣ http://cseweb.ucsd.edu/~chunbinlin/papers/www16demo.pdf ‣ http://arxiv.org/pdf/1505.07922.pdf ‣ http://www.iis.sinica.edu.tw/papers/song/18378-F.pdf ‣ http://arxiv.org/abs/1602.01585 ‣ http://www.lv-nus.org/papers/2012/magic_closet-MM12.pdf ‣ http://arxiv.org/abs/1405.4013 49