Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ディープラーニングでコーデを提案/FashionTechMeetup#4
Search
tn1031
June 07, 2017
Technology
0
2.3k
ディープラーニングでコーデを提案/FashionTechMeetup#4
tn1031
June 07, 2017
Tweet
Share
More Decks by tn1031
See All by tn1031
Outfit Generation and Style Extraction via Bidirectional LSTM and Autoencoder
tn1031
0
130
インタラクティブな属性操作が可能なファッションアイテム検索/attribute manipulation survey
tn1031
0
1.2k
Autoencoderを用いたOutfitからのスタイル抽出/style auto encoder
tn1031
0
13k
fashion_workshop_survey/Size Recommendation System for Fashion E-commerce
tn1031
0
290
画像を用いたファッションアイテム検索/Image Retrieval for Fashion
tn1031
0
5.5k
ファッションアイテム検索における深層学習の活用/Fashion Item Retrieval using Deep Learning
tn1031
0
2.3k
KDD 2016勉強会/Images Don’t Lie: Transferring Deep Visual Semantic Features to Large-Scale Multimodal Learning to Rank
tn1031
0
1k
ファッションのコーディネートを自動生成してみた/FashionTech Talks Tokyo #1 LT
tn1031
2
1.2k
Fashion Tech x Machine Learning/twm_fashion_ml
tn1031
5
5.7k
Other Decks in Technology
See All in Technology
ニッポンの人に知ってもらいたいGISスポット
sakaik
0
130
社内お問い合わせBotの仕組みと学び
nish01
1
590
ビズリーチ求職者検索におけるPLMとLLMの活用 / Search Engineering MEET UP_2-1
visional_engineering_and_design
1
100
Node.js 2025: What's new and what's next
ruyadorno
0
110
10年の共創が示す、これからの開発者と企業の関係 ~ Crossroad
soracom
PRO
1
730
後進育成のしくじり〜任せるスキルとリーダーシップの両立〜
matsu0228
7
3.3k
JAZUG 15周年記念 × JAT「AI Agent開発者必見:"今"のOracle技術で拡張するAzure × OCIの共存アーキテクチャ」
shisyu_gaku
1
160
なぜAWSを活かしきれないのか?技術と組織への処方箋
nrinetcom
PRO
4
810
[Codex Meetup Japan #1] Codex-Powered Mobile Apps Development
korodroid
2
490
ガバメントクラウド(AWS)へのデータ移行戦略の立て方【虎の巻】 / 20251011 Mitsutosi Matsuo
shift_evolve
PRO
2
190
20251007: What happens when multi-agent systems become larger? (CyberAgent, Inc)
ornew
1
250
ACA でMAGI システムを社内で展開しようとした話
mappie_kochi
1
320
Featured
See All Featured
Raft: Consensus for Rubyists
vanstee
139
7.1k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Context Engineering - Making Every Token Count
addyosmani
6
240
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
870
The Cost Of JavaScript in 2023
addyosmani
54
9k
Side Projects
sachag
455
43k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
45
2.5k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Music & Morning Musume
bryan
46
6.8k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Transcript
σΟʔϓϥʔχϯάͰίʔσΛఏҊ !UO7"4*-: JOD 'BTIJPO5FDI.FFUVQ
ίʔσΛఏҊ͢Δ w ϑΝογϣϯͰѻ͏ը૾ w Γ͍ͨ͜ͱ ࣮ݱํ๏ w $//Λ༻͍ͨಛநग़ w εφοϓը૾ͷදݱ
w ݕࡧͷΈ ࣮ݧ ·ͱΊ "HFOEB
w தଜຏ!UO w σʔλαΠΤϯςΟετ w લ৬ɿ4* w ࣄɿػցֶशɾը૾ೝࣝ w ΞϧΰϦζϜͷ։ൃ
ࣗݾհ !UO
3&4&"3$)ˍ%&7&-01.&/5 ࣗࣾͰഓͬͨ։ൃٕज़ͷఏڙ ɾΞϓϦ։ൃ ɾΫϩʔϦϯά ɾػցֶश ɾσΟʔϓϥʔχϯά ɾը૾ղੳ
։ൃٕͨ͠ज़ Ϟσϧண༻ը૾ εφοϓը૾ ΛΫΤϦͱͯ͠ը૾Λݕࡧ͢Δ ΫΤϦը૾ ݕग़ ݕࡧ
ίʔσΛఏҊ͢Δ w ϑΝογϣϯͰѻ͏ը૾ w Γ͍ͨ͜ͱ ࣮ݱํ๏ w $//Λ༻͍ͨಛநग़ w εφοϓը૾ͷදݱ
w ݕࡧͷΈ ࣮ݧ ·ͱΊ "HFOEB
ϑΝογϣϯͰѻ͏ը૾ ը૾ͱεφοϓը૾ͱ͍͏छྨͷυϝΠϯ͕ଘࡏ͢Δ w ஔ͖ࡱΓϚωΩϯͷը૾͕ଟ͍ w ਖ਼໘͔ΒΈͨ࣌ͷσβΠϯ͕Θ͔Γ͍͢ w ண༻Πϝʔδ͕༙͖ʹ͍͘
ը ૾ ε φ ο ϓ ը ૾ ը૾ ಛ w Ϟσϧ͕ண༻ͨ͠ը૾ w ண༻࣌ͷҹίʔσΟωʔτͷࢀߟʹͳΔ w ϙʔζഎܠʹΛڽΒ͍ͯ͠Δ
Γ͍ͨ͜ͱ ͷண༻ΠϝʔδΛఏڙ͍ͨ͠ w ண༻Πϝʔδͷఏڙར༻γʔϯͷى w ίʔσΟωʔτͷఏҊ ৄࡉΛΈ͍ͯΔϢʔβʔʹͱࣅ͍ͯΔΞΠςϜΛ ͬͨεφοϓը૾Λදࣔ͢Δ
ίʔσΛఏҊ͢Δ w ϑΝογϣϯͰѻ͏ը૾ w Γ͍ͨ͜ͱ ࣮ݱํ๏ w $//Λ༻͍ͨಛநग़ w εφοϓը૾ͷදݱ
w ݕࡧͷΈ ࣮ݧ ·ͱΊ "HFOEB
$//Λ༻͍ͨಛநग़ ΞΠςϜͷಛΛ$//ͰϕΫτϧԽ͢Δ w ը૾͔ΒΞΠςϜͷಛΛநग़ͯ͠ϕΫτϧԽ͢Δ w ϕΫτϧಉ࢜ͷҐஔؔྨࣅͱΈͳ͢͜ͱ͕Ͱ͖Δ ಛྔۭؒ f(x) ͍ۙ(ࣅ͍ͯΔ)
ԕ͍(ࣅ͍ͯͳ͍) ը૾σʔλ ॎԣ480pixelͷ߹ɺ࣍ݩ 480x480x3 = 691200 dim ը૾ಛྔ ը૾σʔλΛදݱ͢Δ࣍ͷϕΫτϧ ѹॖ ؔʹCNNΛ࠾༻
$//Λ༻͍ͨಛநग़ ͷྨࣅͷؔUSJQMFUMPTTͰධՁ͢Δ Anchor Positive Negative CNN CNN CNN w
ը૾ͷυϝΠϯʹؔͳ͘ڞ௨ͷωοτϫʔΫΛ͏ w ࣅ͍ͯΔը૾ಉ࢜ۙͮ͘Α͏ʹʗࣅ͍ͯͳ͍ը૾ಉ࢜ԕ͔͟ΔΑ͏ʹ Embedding margin ֶश Embedding
εφοϓը૾ͷදݱ εφοϓը૾ʹؚ·ΕΔΞΠςϜͷಛྔΛΧςΰϦຖʹܭࢉ͢Δ w εφοϓը૾͔Β֤ΧςΰϦͷΞΠςϜΛݕग़ͯ͠ύʔε w ͦΕͧΕͷಛྔΛ·ͱΊͯεφοϓը૾ͷදݱͱ͢Δ UPQTUPQTྖҬ͔Βநग़ͨ͠ಛྔ QBOUTQBOUTྖҬ͔Βநग़ͨ͠ಛྔ CBHTCBHTྖҬ͔Βநग़ͨ͠ಛྔ
GPPUXFBSGPPUXFBSྖҬ͔Βநग़ͨ͠ಛྔ \ εφοϓը૾ ݕग़ εφοϓը૾ͷදݱ
ݕࡧͷΈ छྨͷϞδϡʔϧ͔ΒͳΔ w ݕग़Ϟδϡʔϧεφοϓը૾Λύʔεͯ͠ಛྔΛܭࢉ͓ͯ͘͠ w ݕࡧϞδϡʔϧը૾͔ΒύʔεࡁΈεφοϓը૾Λݕࡧ͢Δ ݕग़ ݕࡧ εφοϓը૾
ΞΠςϜྖҬ ݕग़ Ϟδϡʔϧ ݕࡧ Ϟδϡʔϧ IUUQBSYJWPSHBCT
ίʔσΛఏҊ͢Δ w ϑΝογϣϯͰѻ͏ը૾ w Γ͍ͨ͜ͱ ࣮ݱํ๏ w $//Λ༻͍ͨಛநग़ w εφοϓը૾ͷදݱ
w ݕࡧͷΈ ࣮ݧ ·ͱΊ "HFOEB
࣮ݧ݁Ռ1/2 ΫΤϦը૾ ݕࡧ݁Ռ
࣮ݧ݁Ռ2/2 ΫΤϦը૾ ݕࡧ݁Ռ
ίʔσΛఏҊ͢Δ w ϑΝογϣϯͰѻ͏ը૾ w Γ͍ͨ͜ͱ ࣮ݱํ๏ w $//Λ༻͍ͨಛநग़ w εφοϓը૾ͷදݱ
w ݕࡧͷΈ ࣮ݧ ·ͱΊ "HFOEB
w ը૾͔Βεφοϓը૾Λݕࡧ͢ΔΈΛఏҊ w ண༻Πϝʔδͷىʗར༻γʔϯͷى w ίʔσΟωʔτͷఏҊ w σΟʔϓϥʔχϯάΛ༻͍࣮ͯݱ w ݕग़ͱݕࡧͷΈ߹Θͤ
w ྨࣅͷධՁʹUSJQMFUMPTTΛ༻͍Δ w ༻ײ w େࡶͳಛଊ͑ΒΕ͍ͯΔ w ৎײͷΑ͏ʹࡉ͔͍ಛνϡʔχϯάޙॲཧͰٵऩ w ݕग़ͷਫ਼͕ݕࡧਫ਼ʹӨڹ͢Δ ·ͱΊ
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠