Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Siamese neural networks in recommendation
Search
Syouya Tobita
June 06, 2024
Research
0
210
Siamese neural networks in recommendation
論文読み会@Newbees
Syouya Tobita
June 06, 2024
Tweet
Share
More Decks by Syouya Tobita
See All by Syouya Tobita
Matching theory based recommender systems in online dating
tobi_kite
0
87
Pose Estimationの汎用的な評価指標について
tobi_kite
0
680
Other Decks in Research
See All in Research
高畑鬼界ヶ島と重文・称名寺本薬師如来像の来歴を追って/kikaigashima
kochizufan
0
110
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
170
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
150
LLM-Assisted Semantic Guidance for Sparsely Annotated Remote Sensing Object Detection
satai
3
200
論文紹介:Not All Tokens Are What You Need for Pretraining
kosuken
1
220
snlp2025_prevent_llm_spikes
takase
0
420
POI: Proof of Identity
katsyoshi
0
120
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
340
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
190
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
450
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
580
Language Models Are Implicitly Continuous
eumesy
PRO
0
360
Featured
See All Featured
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
0
950
Digital Ethics as a Driver of Design Innovation
axbom
PRO
0
130
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
400
How to build a perfect <img>
jonoalderson
0
4.7k
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
0
300
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
120
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
65
Fireside Chat
paigeccino
41
3.8k
Navigating Team Friction
lara
191
16k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Transcript
Siamese neural networks in recommendation Newbees論文読み会 飛田 祥弥
目次 • 概要 • Siamese Neural Networks(SNN) • 適用分野 •
適用タスク • 順伝播構造のアルゴリズム • 評価指標 • 今後の課題
概要 Siamese neural network(SNN)のRecommender Systems(RS)への適用文献がこれまでになく、 そのため、本論文はそれらをサーベイし、以下に沿って手法や課題について詳説している。 • SNNをRSに適用する最新の手法(~2023)について • 対象となるRSのタスク、SNNの適用方法、評価方法について
• 文献や実験的観点から考えられるSNNxRSにおけるギャップや課題について
Siamese Neural Networks (SNN) 1993年より2つの署名の類似度を測定するタスクで使われるようになり、代表的なアーキテクチャとし て、Pairs(1993)とTriplets(2015)形式のものがある。
Siamese Neural Networks (SNN): Pair形式 • 入力には類似度を測りたい2画像を用いる。順伝播の際に2つのnetwork間で重みを共有する形で学習 が進む。 • 各networkから抽出した特徴ベクトルから
損失関数により類似度(距離)を推定する。 • 損失関数にはBinary Cross Entropyや Contrastive lossが用いられる。
Siamese Neural Networks (SNN): Triplets形式 • 入力は3つあり、anchorには何かしらの画像、positiveにはanchorと類似した画像、negativeには anchorと類似していない画像を入力する。 • 順伝播構造はPairs形式と同じ
であるが損失関数が異なる。 • 損失関数にはTriplet Lossが 用いられる。 A, P, Nはanchor, positive, negative αはpositiveとnegativeのマージン(=1) e()は各入力パラメータの埋め込み
適用分野 SNNによるRSは2018年まで文献がなく、ここ数年で発展してきている。 主にEC、ファッション、映画、動画などで適用されており、入力データには画像だけでなく、テキス トや音が利用されることもある。
適用タスク RSにおけるSNNの利用目的として、純粋な予測のために使用する場合と、特徴量抽出を行う場合があ る。 順伝播構造は両方に用いられ、クラスタリングやLTRは後者として中間データで利用することを目的とし ている。
順伝播構造のアルゴリズム 順伝播構造を利用する場合には、主に5つのアーキテクチャが利用されており、 2023年の時点では最もCNNが利用されている。 TransformerやGCN(Graph Conv Network)などは発表から数年ほどの論文であるため、適用例が少 ないものと思われる。
評価指標 RSの領域がエラーメトリクスよりもランキングメトリクス を考慮する傾向がある。 また、そのことから一般的な評価指標とされる、 Recall@K, Presicion@K, Accuracy, AUC, F1, NDCG,
MRR, HR などが利用されている。
今後の課題 • 未だ発展途上の領域であるため、アルゴリズムや損失関数などの提案により、改善する余地が ある。 • どの研究も精度以外の評価指標(多様性やカバレッジなど)を考慮できていないため、バイアス(人気 度合いによる偏り)が起こる可能性がある。 • SNNのRS適用領域が乏しく且つ、シンプルなアルゴリズムであるため、未適用の主な領域(Web、 SNS等)へ適用することで、新たなプラスな面での寄与を促すことが必要である。
End of file