Upgrade to Pro — share decks privately, control downloads, hide ads and more …

LOFAR Imaging of Jupiter's Radiation Belts: Pipeline & Results

transientskp
December 03, 2012

LOFAR Imaging of Jupiter's Radiation Belts: Pipeline & Results

Philippe Zarka

transientskp

December 03, 2012
Tweet

More Decks by transientskp

Other Decks in Science

Transcript

  1. LOFAR Imaging of Jupiter’s radiation belts:
    pipeline and results
    J. Girard, C. Tasse, P. Zarka, S. Hess

    View Slide

  2. I. Planetary imaging pipeline
    II. First results at Jupiter
    LF characterization of the radiation belts
    Flux variability & Beaming
    III. Next ...
    I. Planetary imaging pipeline

    View Slide

  3. Jupiter
    ~49’’ (Nov 2011)
    Magnetic dipole : Tilt angle β ≈ 9.6° toward λIII
    = 201.7°
    Magnetic field 4.29 G.RJ
    3 (>>Bearth
    = 0.312 G.RE
    3)
    mag. field line
    mag. equator
    Spin vector : Period = 9h55m29s (System III, 1965)
    spin equator

    View Slide

  4. Jovian radio emissions
    e-
    Thermal (λ ~ cm)
    1
    1
    1
    2
    Auroral / Io cyclotron emission (λ ≥ DAM)
    2
    2
    3
    Radiation belts synchrotron emission (λ = dm-m)
    3
    3

    View Slide

  5. Jovian radio emissions
    Radiation belts synchrotron emission (λ = dm-m)
    • Belts radiating from ~1 to ~3 RJ
    • Energetic particles (ions, e- of 100s keV → 10s MeV) trapped near the magnetic equator
    • Anisotropic (beamed) and polarized emission (~20-25% linear, <1% circular)
    3
    VLA 5 GHz
    [Santos-Costa et al., 2009]

    View Slide

  6. 2.3 GHz / 13 cm
    333 MHz / 90 cm
    14 GHz / 2 cm
    1.4 GHz / 20 cm
    5 GHz / 6 cm
    Previous resolved observations
    LOFAR HBA / ~2 m
    (127-172 MHz)
    -0.011 0.012 0.035 0.059 0.082 0.11 0.13 0.15 0.18
    LF → low e- energies (100s keV) , HF → (10s MeV)

    View Slide

  7. Planetary imaging « pipeline »
    LOFAR observation :
    • 49 HBA stations : 20 CS + 9 RS
    • 2 beams : Jupiter (On) & 4C15.05 (Off) , Δθ~4°
    • 2 x 121 SB (23 MHz) covering the band 127-172 MHz
    • δt=0.3ms , δf=3kHz
    elevation (°)
    time (h)
    Jupiter
    4C15.05
    Cas A
    Tau A
    Cyg A
    2011/11/10, 18h24 → 2011/11/11, 4h24 (10 hours)
    1st processing step : Classical Flagging & Calibration (NDPPP, BBS, ...)

    View Slide

  8. 4C15.06
    4C15.05
    4C12.10
    4C13.12
    4C16.05
    MRC0210+157
    MRC0156+136
    MRC0156+126
    MRC0206+136
    TXS0201+170
    MRC0157+168
    TXS0209+144
    Calibrator
    • Identification via
    (Nasa Extragalactic
    Database)
    http://ned.ipac.caltech.edu/
    • 4C15.05
    6.5 Jy @ 160 MHz
    • Other sources
    ~1-5 Jy
    • Other sources
    • Image over
    10 SB
    uv=0.2-4 kλ,
    2048 x 2048 pixels
    5°x5°

    View Slide

  9. Complex gain solution for antenna CS 026 HBA1, SB 121
    start: 10/11/11 18h24 end:11/11/11 4h24
    XX YY
    Calibration inspection

    View Slide

  10. Planetary imaging « pipeline »
    LOFAR observation :
    • 49 HBA stations : 20 CS + 9 RS
    • 2 beams : Jupiter (On) & 4C15.05 (Off) , Δθ~4°
    • 2 x 121 SB (23 MHz) covering the band 127-172 MHz
    • δt=0.3ms , δf=3kHz
    1st processing step : Classical Flagging & Calibration (NDPPP, BBS, ...)
    Planetary Imaging specificity :
    • Proper motion of the planet
    → requires correction of the phase center in the (u,v) plane

    View Slide

  11. 166-172 MHz
    150-157 MHz 158-166 MHz
    Δt =18h-20h
    141-149 MHz
    127-133 MHz 133-141 MHz
    uv=0.2~5kλ beam=50’’x30’’ color: 0,1-0,9 Jy/beam
    Jupiter
    NVSS  J020457+114145  

    View Slide

  12. 166-172 MHz
    150-157 MHz 158-166 MHz
    141-149 MHz
    127-133 MHz 133-141 MHz
    uv=0.2~5kλ beam=50’’x30’’
    Jupiter
    NVSS  J020457+114145  
    color: 0,1-0,9 Jy/beam
    Δt =20h-22h

    View Slide

  13. 166-172 MHz
    150-157 MHz 158-166 MHz
    141-149 MHz
    127-133 MHz 133-141 MHz
    uv=0.2~5kλ beam=50’’x30’’
    Jupiter
    NVSS  J020457+114145  
    color: 0,1-0,9 Jy/beam
    Δt =22h-24h

    View Slide

  14. 166-172 MHz
    150-157 MHz 158-166 MHz
    141-149 MHz
    127-133 MHz 133-141 MHz
    uv=0.2~5kλ beam=50’’x30’’
    Jupiter
    NVSS  J020457+114145  
    color: 0,1-0,9 Jy/beam
    Δt =00h-02h

    View Slide

  15. 166-172 MHz
    150-157 MHz 158-166 MHz
    141-149 MHz
    127-133 MHz 133-141 MHz
    uv=0.2~5kλ beam=50’’x30’’
    Jupiter
    NVSS  J020457+114145  
    color: 0,1-0,9 Jy/beam
    Δt =02h-04h

    View Slide

  16. Planetary imaging « pipeline »
    1st processing step : Classical Flagging & Calibration (NDPPP, BBS, ...)
    LOFAR observation :
    • 49 HBA stations : 20 CS + 9 RS
    • 2 beams : Jupiter (On) & 4C15.05 (Off) , Δθ~4°
    • 2 x 121 SB (23 MHz) covering the band 127-172 MHz
    • δt=0.3ms , δf=3kHz
    Planetary Imaging specificity :
    • Proper motion of the planet
    → requires correction of the phase center in the (u,v) plane
    • Moving sources around planet center = wobbling of the magnetic equator
    → requires correction via rotations in the (u,v) plane
    magnetic equator
    projection
    [Levin et al., 2001] http://juno.wisc.edu/science_magnetosphere.html
    VLA 1.4 GHz

    View Slide

  17. Planetary imaging « pipeline »
    1st processing step : Classical Flagging & Calibration (NDPPP, BBS, ...)
    LOFAR observation :
    • 49 HBA stations : 20 CS + 9 RS
    • 2 beams : Jupiter (On) & 4C15.05 (Off) , Δθ~4°
    • 2 x 121 SB (23 MHz) covering the band 127-172 MHz
    • δt=0.3ms , δf=3kHz
    Planetary Imaging specificity :
    • Proper motion of the planet
    → requires correction of the phase center in the (u,v) plane
    • Moving sources around planet center = wobbling of the magnetic equator
    → requires correction via rotations in the (u,v) plane
    VLA 1.4 GHz
    ” but will cause smearing of other sources in the field → substract these sources first
    2nd processing step : Widefield Imaging (AWImager) [Tasse, 2012]
    • Automatic identification of sources above threshold
    • Peeling of the sources ≠ planet (Sagecal-like algorithm - C. Tasse)

    View Slide

  18. Before peeling SB30-39
    10°x10°

    View Slide

  19. After peeling SB30-39
    10°x10°

    View Slide

  20. Planetary imaging « pipeline »
    1st processing step : Classical Flagging & Calibration (NDPPP, BBS, ...)
    LOFAR observation :
    • 49 HBA stations : 20 CS + 9 RS
    • 2 beams : Jupiter (On) & 4C15.05 (Off) , Δθ~4°
    • 2 x 121 SB (23 MHz) covering the band 127-172 MHz
    • δt=0.3ms , δf=3kHz
    Planetary Imaging specificity :
    • Proper motion of the planet
    → requires correction of the phase center in the (u,v) plane
    • Moving sources around planet center = wobbling of the magnetic equator
    → requires correction via rotations in the (u,v) plane
    VLA 1.4 GHz
    ” but will cause smearing of other sources in the field → substract these sources first
    2nd processing step : Widefield Imaging (AWImager) [Tasse, 2012]
    • Automatic identification of sources above threshold
    • Peeling of the sources ≠ planet (Sagecal-like algorithm - C. Tasse)
    3rd processing step : Apply uv corrections (motion, rotation of Jupiter source)
    → 2 data cubes :
    • 12 Rotation-averaged images ( 12 subbands x 7h [=19h-2h] )
    • 12 x 5 2-hour images ( 12 subbands x 2h [5 time intervals of 2h] )

    View Slide

  21. I. Planetary imaging pipeline
    II. First results at Jupiter
    LF characterization of the radiation belts
    Flux variability & Beaming
    III. Next ...
    II. First results at Jupiter
    LF characterization of the radiation belts

    View Slide

  22. 18h-20h 20h-22h 22h-00h
    00h-02h 02h-04h
    distorsion (low elevation)
    2-hour & Frequency averaged images
    Δf = 127-172 MHz), Δt = 2h, uv= 0-15 kλ corrected from motion & wobble,
    Beam = 17.8’’x15.5’’, Pixel = 2", Jupiter disk = 49’’

    View Slide

  23. Rotation & Frequency averaged image
    Δf = 127-172 MHz), Δt = 7h, uv= 0-15 kλ, Beam = 17.8’’x15.5’’, Pixel = 1", Jupiter disk = 49’’

    View Slide

  24. Contours @ 15 GHz [de Pater & Dunn, 2003]
    -0.058 -0.035 -0.011 0.012 0.035 0.059 0.082 0.11 0.13 0.15 0.18
    55.0 50.0 45.0 2:06:40.0 35.0 30.0
    30.0
    18:00.0
    30.0
    11:17:00.0
    30.0
    16:00.0
    30.0
    Jy/beam
    RA
    Dec(°)
    Rotation & Frequency averaged image
    Δf = 127-172 MHz), Δt = 7h, uv= 0-15 kλ, Beam = 17.8’’x15.5’’, Pixel = 1", Jupiter disk = 49’’

    View Slide

  25. Radiation belts extent at LF ~ 6-7 RJ , L-shell ~ 1-3.5 RJ
    Slightly more extended than at HF [Dessler, 1983]
    6-7 RJ
    Rotation & Frequency averaged image

    View Slide

  26. E & W peaks location on 10-hr time integrated images
    1.43 – 1.67 Rj
    1.5 Rj
    1.30 – 1.78 Rj
    1.35 Rj
    VLA 5 GHz
    [Santos-Costa et al., 2009]

    View Slide

  27. Consistent with radial excursions measured at HF (e.g. ~ 0.25 Rj
    from 1.45 to 1.7 Rj
    )
    [Dulk et al., 1997]
    E & W peaks location on 2-hr time integrated images
    1.13 – 1.70 Rj
    1.22 – 1.54 Rj

    View Slide

  28. I. Planetary imaging pipeline
    II. First results at Jupiter
    LF characterization of the radiation belts
    Flux variability & Beaming
    III. Next ...
    II. First results at Jupiter
    Flux variability & Beaming

    View Slide

  29. Bright sources around Jupiter
    1) MRC 0204+110
    S=2.24±0.23 Jy @ 73.8 MHz
    α=-1.0
    2) NVSS J020530+112338
    S=1.00±0.12 Jy @ 73.8 MHz
    α=-0.9
    3) MRC 0202+114
    S=1.94±0.17 Jy @ 73.8 MHz
    α=-0.9
    [NED http://ned.ipac.caltech.edu/ ]
    1
    2
    3
    Jupiter
    Wide-field unresolved image before peeling

    View Slide

  30. NVSS J020530+112338
    MRC 0204+110
    MRC 0202+114
    resolved 1"
    unresolved after peeling
    unresolved before peeling
    resolved 2"
    Jupiter
    Clean?

    View Slide

  31. (Girard et al., SF2A 2012, adapted from Kloosterman et al., 2008)

    View Slide

  32. [Berge, 1966]
    Beaming
    Emission is maximum when observer is in the magnetic equator
    Magnetic Latitude = DE
    + 9.6° cos(CML-λ
    III
    )
    DE
    = jovicentric latitude of Earth = 3.29° in Nov. 2011

    View Slide

  33. Emission is maximum when observer is in the magnetic equator
    Magnetic Latitude = DE
    + 9.6° cos(CML-λ
    III
    )
    DE
    = jovicentric latitude of Earth = 3.29° in Nov. 2011
    Beaming
    λ
    III M
    =318°
    λ
    III M
    =104°
    West
    East

    View Slide

  34. Beaming
    λIII M
    =318°
    λIII M
    =104°
    λIII E = CML-90°
    toward
    observer
    W
    λIII W = CML-90°
    λIII M = CML
    E
    Hot spot @ λ
    III
    = 204° - 255° ?
    [Conway & Stannard, 1972 ;
    de Pater 1983;
    Leblanc, 1997]

    View Slide

  35. I. Planetary imaging pipeline
    II. First results at Jupiter
    LF characterization of the radiation belts
    Flux variability & Beaming
    III. Next ...
    III. Next ...

    View Slide

  36. (adapted from Santos-Costa, 2009)
    DE
    ~ 0° (1997 & 2002)
    DE
    ~ 3.29° (2011)
    East-West Peak Brightness Emission Ratio
    Central Meridian Longitude (deg.)
    06 May 1997
    07 May 1997
    11 May 1997
    12 May 1997
    28 Oct 2002
    01 Nov 2002
    05 Nov 2002
    08 Nov 2002
    10 Nov 2002
    11 Nov 2002
    21 Nov 2002
    04 Dec 2002
    11 Dec 2002
    +
    +
    *
    *
    11 Nov 2011
    11 Nov 2011
    E/W intensity ratio

    View Slide

  37. Spots : secondary maxima in LOFAR image Contours : de Pater, 1991
    High latitude emission

    View Slide

  38. • Specific routines developed for processing planetary observations
    • First resolved images at 127-172 MHz, 20-25 mJy/beam
    • Girard et al. proceedings published [SF2A, 2012] ; A&A paper in preparation
    Summary & Perspectives
    • LC0_005 proposal « Saturn’s deep atmosphere » (Courtin et al.) : HBA
    • LC0_007 proposal «Exoplanet radio search » (Zarka et al.) : LBA
    • LC0_006 proposal « Jupiter's Synchrotron Radiation » (de Pater et al.) : LBA & HBA + possible joint
    - polarization, extent to LF ? (LBA range), spectral variations ?
    - 3D reconstruction of B field by tomography
    - topology of multipolar BJup at low latitudes close to the planet
    - electron acceleration & transport : pitch angle scattering, inward diffusion, effect of satellites, inter
    - comparison with models (Salammbô 3D)
    - time variability, magnetospheric dynamics
    [de Pater & Sault, 1998]
    [Connerney et al., 1993 ; Santos-Costa, 2009]

    View Slide



  39. View Slide