Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論文紹介] Mastering Diverse Domains through World ...
Search
tt1717
October 25, 2023
Research
0
91
[論文紹介] Mastering Diverse Domains through World Models
PDFファイルをダウンロードすると,スライド内のリンクを見ることができます.
tt1717
October 25, 2023
Tweet
Share
More Decks by tt1717
See All by tt1717
[論文サーベイ] Survey on Pokemon AI 3
tt1717
0
55
[論文サーベイ] Survey on Pokemon AI 2
tt1717
0
43
[論文サーベイ] Survey on Pokemon AI
tt1717
0
74
[論文サーベイ] Survey on Minecraft AI in NeurIPS 2024
tt1717
0
74
[論文サーベイ] Survey on GPT for Games
tt1717
0
57
[論文サーベイ] Survey on World Models for Games
tt1717
0
150
[論文サーベイ] Survey on Linguistic Explanations in Deep Reinforcement Learning of Atari Tasks
tt1717
0
61
[論文サーベイ] Survey on Visualization in Deep Reinforcement Learning of Game Tasks 2
tt1717
0
67
[論文サーベイ] Survey on VLM and Reinforcement Learning in Game Tasks (Minecraft)
tt1717
0
140
Other Decks in Research
See All in Research
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
140
Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction
satai
3
250
Combinatorial Search with Generators
kei18
0
640
SSII2025 [TS1] 光学・物理原理に基づく深層画像生成
ssii
PRO
4
4.1k
Streamlit 総合解説 ~ PythonistaのためのWebアプリ開発 ~
mickey_kubo
1
1.4k
Computational OT #4 - Gradient flow and diffusion models
gpeyre
0
370
Vision and LanguageからのEmbodied AIとAI for Science
yushiku
PRO
1
500
学生向けアンケート<データサイエンティストについて>
datascientistsociety
PRO
0
5.4k
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
130
数理最適化に基づく制御
mickey_kubo
6
720
Submeter-level land cover mapping of Japan
satai
3
220
AIによる画像認識技術の進化 -25年の技術変遷を振り返る-
hf149
7
3.9k
Featured
See All Featured
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
It's Worth the Effort
3n
187
28k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
For a Future-Friendly Web
brad_frost
179
9.9k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Become a Pro
speakerdeck
PRO
29
5.5k
Designing for humans not robots
tammielis
253
25k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Producing Creativity
orderedlist
PRO
347
40k
Transcript
どんなもの? 先行研究と比べて何がすごい? 技術の手法や肝は? どうやって有効だと検証した? ・先行研究では特定タスクやドメインに特化していたが,Dreamerv3で は多くのドメインにわたるタスクを解決できる汎用的でスケーリング特 性をもつ手法を提案. ・チューニングが少なくて済み,タスクや環境の変化に対して堅牢. ・優れたスケーリング特性により先行研究よりも大規模で複雑なタスク を処理できる.
・複数のベンチマークで性能評価 行動空間が離散or連続,空間が2Dor3D,報酬が疎or密なものを対 象. ・モデルサイズの変更による性能評価 ・世界モデルによる未来予測 ・Minecraftダイヤモンド収集タスクによる評価 ・Dreamerv2をより汎用的に使える手法にするためにいくつか工夫 ・ドメインが変わっても常に同じハイパラで学習できるように 1.観測や報酬の値をsymlog関数で変換する. 2.Actorの目的関数ではλ収益の値を正規化する. ・固定ハイパラを用いた広範囲のドメインにおいて,既存手法を超 えた. ・Dreamerv3はスケーリング特性により,大きなモデルを使用する と高いデータ効率と高い最終パフォーマンスを獲得. ・「人間のデータ」「カリキュラム学習」を使わずに,ゼロから Minecraftでダイヤモンド採集タスクに成功した. Mastering Diverse Domains through World Models (arXiv 2023)Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, Timothy Lillicrap https://arxiv.org/pdf/2301.04104v1.pdf 2023/05/06 論文を表す画像 被引用数:947 1/11
Symlog Prediction ❏ ドメインが変わると,観測や報酬の値のスケールが変わるので,逐一 ハイパラを調整する必要がある ❏ それをしなくていいように,symlog関数をかけることで値をある程度 揃える ❏ 可逆な関数なので,逆関数をかければ元の値に戻せる
2/11
λ収益の正規化 ❏ エントロピー正則化付きでactorを学習する場合,その係数のチューニ ングは報酬のスケールやスパース性に依存するので難しい ❏ うまく報酬の値を正規化できれば,ドメインによらずエントロピー項 の係数を固定できるはず ❏ 収益を5~95%分位数の幅で正規化する ❏
単純に分散で正規化すると,報酬がスパースなときに,収益が過大評 価されてしまうので,外れ値を弾けるようにこの形にする 3/11
実験(ベンチマーク) ❏ すべてのドメイン・タスクで同じハイパラで高い性能が出せる ❏ チューニングの必要がなくなる 4/11
実験(スケーリング) ❏ モデルサイズによって性能がスケールすることを確認 ❏ 最終パフォーマンスとデータ効率向上 ❏ 勾配ステップ数を増やすと,データ効率がさらに向上 ❏ 最終パフォーマンスはどれも同じ 5/11
実験(データ効率) ❏ DMLabタスクでDreamerv3はIMPALAの約1/130のデータ効率 ❏ さらに,Dreamerv3の最終パフォーマンスがIMPALAを超えている 6/11
実験(世界モデルにおける未来予測) ❏ 上2段がDMLabタスクにおける結果 ❏ 下2段がControl Suiteタスクにおける結果 7/11
実験(Minecraftタスク) ❏ Minecraftタスクで初めてRL agentがダイヤモンドを取ることに成功 8/11
まとめ ❏ Dreamerv2の発展版を提案 ❏ Minecraftタスクでダイヤモンドを採取できるのはすごいと感じた ❏ Minecraftタスク40回のプレイすべてで,ダイヤモンドを採取できな い ❏ 人間だと40回の全プレイにおいて,ダイヤモンドを採取できると
予想 ❏ より横断的にゲーム環境のタスクでテストの実施が必要 9/11
補足:用語の意味 ❏ カリキュラム学習 ❏ タスクの難易度を徐々に上げて,効率的にエージェントを学習さ せる方法 ❏ トレーニング率 ❏ ステップ数に対するトレーニング中に実行された環境ステップ数
の比率 10/11
参考文献 ❏ モリカトロンAIラボ ❏ 松尾研究室スライド ❏ Danijar Hafnerサイト ❏ ステートオブAIガイド
11/11