Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論文紹介] Mastering Diverse Domains through World ...
Search
tt1717
October 25, 2023
Research
0
100
[論文紹介] Mastering Diverse Domains through World Models
PDFファイルをダウンロードすると,スライド内のリンクを見ることができます.
tt1717
October 25, 2023
Tweet
Share
More Decks by tt1717
See All by tt1717
[論文サーベイ] Survey on Google DeepMind’s Game AI
tt1717
0
13
[論文サーベイ] Survey on VLM for Video Game Quality Assurance
tt1717
0
12
[論文サーベイ] Survey on Pokemon AI 3
tt1717
0
68
[論文サーベイ] Survey on Pokemon AI 2
tt1717
0
57
[論文サーベイ] Survey on Pokemon AI
tt1717
0
92
[論文サーベイ] Survey on Minecraft AI in NeurIPS 2024
tt1717
0
110
[論文サーベイ] Survey on GPT for Games
tt1717
0
68
[論文サーベイ] Survey on World Models for Games
tt1717
0
180
[論文サーベイ] Survey on Linguistic Explanations in Deep Reinforcement Learning of Atari Tasks
tt1717
0
70
Other Decks in Research
See All in Research
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
18
8.8k
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
1k
Panopticon: Advancing Any-Sensor Foundation Models for Earth Observation
satai
3
410
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
570
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
280
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
3
540
snlp2025_prevent_llm_spikes
takase
0
420
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
740
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1k
思いつきが武器になる:研究というゲームを始めよう / Ideas Are Your Equipments : Let the Game of Research Begin!
ks91
PRO
0
110
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
170
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
280
Featured
See All Featured
What's in a price? How to price your products and services
michaelherold
246
13k
How to Ace a Technical Interview
jacobian
281
24k
Bash Introduction
62gerente
615
210k
Documentation Writing (for coders)
carmenintech
77
5.2k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.5k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.2k
Unsuck your backbone
ammeep
671
58k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
390
Rebuilding a faster, lazier Slack
samanthasiow
85
9.3k
Automating Front-end Workflow
addyosmani
1371
200k
Transcript
どんなもの? 先行研究と比べて何がすごい? 技術の手法や肝は? どうやって有効だと検証した? ・先行研究では特定タスクやドメインに特化していたが,Dreamerv3で は多くのドメインにわたるタスクを解決できる汎用的でスケーリング特 性をもつ手法を提案. ・チューニングが少なくて済み,タスクや環境の変化に対して堅牢. ・優れたスケーリング特性により先行研究よりも大規模で複雑なタスク を処理できる.
・複数のベンチマークで性能評価 行動空間が離散or連続,空間が2Dor3D,報酬が疎or密なものを対 象. ・モデルサイズの変更による性能評価 ・世界モデルによる未来予測 ・Minecraftダイヤモンド収集タスクによる評価 ・Dreamerv2をより汎用的に使える手法にするためにいくつか工夫 ・ドメインが変わっても常に同じハイパラで学習できるように 1.観測や報酬の値をsymlog関数で変換する. 2.Actorの目的関数ではλ収益の値を正規化する. ・固定ハイパラを用いた広範囲のドメインにおいて,既存手法を超 えた. ・Dreamerv3はスケーリング特性により,大きなモデルを使用する と高いデータ効率と高い最終パフォーマンスを獲得. ・「人間のデータ」「カリキュラム学習」を使わずに,ゼロから Minecraftでダイヤモンド採集タスクに成功した. Mastering Diverse Domains through World Models (arXiv 2023)Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, Timothy Lillicrap https://arxiv.org/pdf/2301.04104v1.pdf 2023/05/06 論文を表す画像 被引用数:947 1/11
Symlog Prediction ❏ ドメインが変わると,観測や報酬の値のスケールが変わるので,逐一 ハイパラを調整する必要がある ❏ それをしなくていいように,symlog関数をかけることで値をある程度 揃える ❏ 可逆な関数なので,逆関数をかければ元の値に戻せる
2/11
λ収益の正規化 ❏ エントロピー正則化付きでactorを学習する場合,その係数のチューニ ングは報酬のスケールやスパース性に依存するので難しい ❏ うまく報酬の値を正規化できれば,ドメインによらずエントロピー項 の係数を固定できるはず ❏ 収益を5~95%分位数の幅で正規化する ❏
単純に分散で正規化すると,報酬がスパースなときに,収益が過大評 価されてしまうので,外れ値を弾けるようにこの形にする 3/11
実験(ベンチマーク) ❏ すべてのドメイン・タスクで同じハイパラで高い性能が出せる ❏ チューニングの必要がなくなる 4/11
実験(スケーリング) ❏ モデルサイズによって性能がスケールすることを確認 ❏ 最終パフォーマンスとデータ効率向上 ❏ 勾配ステップ数を増やすと,データ効率がさらに向上 ❏ 最終パフォーマンスはどれも同じ 5/11
実験(データ効率) ❏ DMLabタスクでDreamerv3はIMPALAの約1/130のデータ効率 ❏ さらに,Dreamerv3の最終パフォーマンスがIMPALAを超えている 6/11
実験(世界モデルにおける未来予測) ❏ 上2段がDMLabタスクにおける結果 ❏ 下2段がControl Suiteタスクにおける結果 7/11
実験(Minecraftタスク) ❏ Minecraftタスクで初めてRL agentがダイヤモンドを取ることに成功 8/11
まとめ ❏ Dreamerv2の発展版を提案 ❏ Minecraftタスクでダイヤモンドを採取できるのはすごいと感じた ❏ Minecraftタスク40回のプレイすべてで,ダイヤモンドを採取できな い ❏ 人間だと40回の全プレイにおいて,ダイヤモンドを採取できると
予想 ❏ より横断的にゲーム環境のタスクでテストの実施が必要 9/11
補足:用語の意味 ❏ カリキュラム学習 ❏ タスクの難易度を徐々に上げて,効率的にエージェントを学習さ せる方法 ❏ トレーニング率 ❏ ステップ数に対するトレーニング中に実行された環境ステップ数
の比率 10/11
参考文献 ❏ モリカトロンAIラボ ❏ 松尾研究室スライド ❏ Danijar Hafnerサイト ❏ ステートオブAIガイド
11/11