Upgrade to Pro — share decks privately, control downloads, hide ads and more …

数論幾何と分岐

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for Naoya Umezaki Naoya Umezaki
June 26, 2018
1.4k

 数論幾何と分岐

ある企業の研究者の方に自分の研究の概要を説明したものです。

Avatar for Naoya Umezaki

Naoya Umezaki

June 26, 2018
Tweet

Transcript

  1. ਺࿦زԿͱ͸ʁ ݚڀର৅ɿํఔࣜͷղશମͷͳ͢ਤܗɻ ྫ y = x2, x2 + y2 =

    1, y2 = x(x − 1)(x − 2) ͍Ζ͍ΖͳՃݮ৐Λ΋ͭ਺ͷू߹ʢ੔਺શମɺ༗ཧ਺શମɺ࣮਺ શମɺෳૉ਺શମͳͲʣͰํఔࣜΛߟ͑Δɻ ྫɻϑΣϧϚʔ༧૝ xn + yn = 1 ͷ༗ཧ਺ղɻ ക࡚ ௚໵ ਺࿦زԿͱ෼ذ
  2. ෳૉۂઢͷ෼ذ y2 = x(x − 1)(x − 2) Ұൠʹ͸ x

    ͷ஋ΛܾΊΔͱ y ͷ஋͕;͖ͨͭ·Δɻٿ໘;ͨ ͭͱ͍͍ͩͨಉ͡ɻ ͱ͜Ζ͕ x = 0, 1, t, ∞ Ͱ͸ॏղΛ΋ͭɺͭ·Γ y ͷ஋͸ͻ ͱͭɻ͜ͷΑ͏ͳ఺Λ෼ذ఺ͱ͍͏ɻ ͜ͷۂઢͷղશମʢʹແݶԕ఺Λ͚ͭՃ͑ͨ΋ͷʣͷ͔ͨͪ ͸ʁٿ໘ೋͭΛ૊Έ߹ΘͤͯɺυʔφπܕΛͭ͘Δɻ ക࡚ ௚໵ ਺࿦زԿͱ෼ذ
  3. Hurwitz ͷެࣜ ೋͭͷۂઢ Y → X ͷؒͷछ਺ͷެࣜ 2g(Y) − 2

    = d(2g(X) − 2) + ∑ P (eP − 1) g ͕݀ͷ਺ɺ2g − 2 ΛΦΠϥʔ਺ʢߴ࣍ݩͷਤܗʹ͍ͨͯ͠ ΋ఆٛͰ͖ΔʣͱΑͿɻd ͕Ұൠతͳ఺ͷ্ʹ͋Δ఺ͷ਺ɺ P ͸෼ذ఺ɺeP ͸෼ذͷେ͖͞ʢղͷॏෳ౓ʣ ɻ લͷྫͰ͸ɺd = 2, P = 0, 1, 2, ∞, eP = 2, g(X) = 0 ͳͷͰ g(Y) = 1 ͱͳΔɻ ͱ͘ʹɺ͜Ε͔Β P1 ্ෆ෼ذɺҰ఺Ͱ෼ذ͢Δඃ෴͸ଘࡏ͠ͳ ͍͜ͱ͕Θ͔Δɻ2g − 2 = −2d + 1 ͱ͢Δͱ g = −d + 3 2 < 0 ͱ ͳΔͷͰɻ ക࡚ ௚໵ ਺࿦زԿͱ෼ذ
  4. ༗ݶମ ੔਺Λૉ਺ p ͰΘͬͨ͋·Γͷͳ͢ू߹ Fp Λߟ͑Δɻ͜Ε͸Ճ ݮ৐আͰด͡Δɻ F3 = {0,

    1, 2}, F5 = {0, 1, 2, 3, 4} F3 Ͱ͸ 2 × 2 = 1 ͱͳΓɺ1/2 = 2 ͱͳΔɻ ͞ΒʹҰม਺ํఔࣜͷղʢͨͱ͑͹ x2 = −1 ͷղͳͲʣΛ͢΂ͯ ͚ͭ͘Θ͑ͨ΋ͷΛΛ ¯ Fp ͱ͔͘ɻ͜Ε΋ p ͝ͱʹଘࡏɻෳૉ਺ ͷྨࣅɻ ക࡚ ௚໵ ਺࿦زԿͱ෼ذ
  5. ༗ݶମ্ͷۂઢͷ෼ذ ༗ݶମ্ͷۂઢͷྫɻ P1ɿ ¯ Fp શମͱແݶԕ఺ʢٿ໘ͷྨࣅʣ yp − y =

    x x Λ P1 ͷ࠲ඪͱΈͯɺͦͷ্ͷඃ෴ͱߟ͑Δɻ ͨͱ͑͹ x = 0 ͩͱ y = 0, 1, 2, . . . , p − 1 ͕ղɻ ෼ذ͢Δ͔ʁ ॏղ͕ଘࡏ͢ΔͳΒ͹ɺඍ෼ͱͷڞ௨Ҽࢠ͋Δɻඍ෼͢Δͱ pyp−1 − 1 = −1 ͰɺͲ͜΋ফ͑ͳ͍ɻͭ·Γ x = ∞ Ҏ֎Ͱ͸෼ ذ͠ͳ͍ɻ P1 ্Ұ఺Ͱ෼ذ͢Δඃ෴͕ଘࡏɻHurwitz ͷެ͕ࣜͳΓͨͨͳ͍ʂ ക࡚ ௚໵ ਺࿦زԿͱ෼ذ
  6. Grothendieck-Ogg-Shafarevich ެࣜ ༗ݶମ্ͷۂઢͰ͸෼ذͷ༷ࢠΛΑΓਂ͘ଊ͑Δඞཁ͕͋Δɻ ෼ذͷΑ͏͢Λ͋ΒΘ͋ͨ͢Β͍͠ෆมྔɿSwan ಋख SwP ʢSerreʣΛఆٛɻ Grothendieck-Ogg-Shafarevich ެࣜ χc(U,

    F) = rankFχc(U, Q ) − ∑ P SwPF F ͕ඃ෴ɺχc(U, F) ͕ΦΠϥʔ਺ɻ ͞Βʹ͜ΕΒͷߴ࣍ݩԽɻ ʢม਺΍ํఔࣜͷ਺Λ૿΍ͯ͠ਤܗΛ ߟ͑Δɻ ʣ ߴ࣍ݩͷਤܗʹମ͢Δ Swan ಋखͷఆٛɺGOS ެࣜɻ ʢՃ౻-ࡈ౻ʣ ക࡚ ௚໵ ਺࿦زԿͱ෼ذ
  7. ݱࡏͷݚڀ ෳૉ਺ͷઢܗඍ෼ํఔࣜʢD Ճ܈ʣͷෆ֬ఆಛҟ఺ͱ༗ݶମ্ͷ ෼ذͷྨࣅɻ D Ճ܈ͷΦΠϥʔ਺ʹղͷ࣍ݩ ྫɻexp z ͸ෳૉฏ໘্ਖ਼ଇͰ z

    = ∞ Ͱ͸ෆ֬ఆಛҟ఺Λ΋ͭ D Ճ܈ʹ͓͍ͯಛੑαΠΫϧ͕ॏཁͳෆมྔɻ ͜ͷྨࣅΛ༗ݶମ΍੔਺܎਺ͷํఔࣜͷͳ͢ਤܗʹରͯ͠ఆٛ͠ ͍ͨɻͦΕΛ࢖ͬͯΦΠϥʔ਺ͷܭࢉͳͲΛߦ͏ɻ ʢݱࡏਐߦதʣ ക࡚ ௚໵ ਺࿦زԿͱ෼ذ