Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
statistician_ja_lt5.pdf
Search
Takayuki Uchiba
November 15, 2020
Science
0
670
statistician_ja_lt5.pdf
一様最小分散不偏推定量が存在しない例を紹介しました。
Takayuki Uchiba
November 15, 2020
Tweet
Share
More Decks by Takayuki Uchiba
See All by Takayuki Uchiba
縮小推定のはなし.pdf
utaka233
1
2.4k
高次元データに対するL1正則化の有効性
utaka233
1
3.1k
Other Decks in Science
See All in Science
高校生就活へのDA導入の提案
shunyanoda
0
2.9k
Symfony Console Facelift
chalasr
2
460
Valuable Lessons Learned on Kaggle’s ARC AGI LLM Challenge (PyDataGlobal 2024)
ianozsvald
0
400
データベース02: データベースの概念
trycycle
PRO
2
870
SciPyDataJapan 2025
schwalbe10
0
250
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
170
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
970
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
4
960
KH Coderチュートリアル(スライド版)
koichih
1
44k
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
580
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
310
Machine Learning for Materials (Challenge)
aronwalsh
0
310
Featured
See All Featured
The Invisible Side of Design
smashingmag
301
51k
Testing 201, or: Great Expectations
jmmastey
45
7.6k
Docker and Python
trallard
45
3.5k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.5k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Git: the NoSQL Database
bkeepers
PRO
431
65k
Unsuck your backbone
ammeep
671
58k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Bash Introduction
62gerente
614
210k
How to Think Like a Performance Engineer
csswizardry
25
1.8k
Transcript
Ұ༷࠷খࢄෆภਪఆྔඞͣଘࡏ͢Δ͔ʁ !VUBLB
Ұ༷࠷খࢄෆภਪఆྔ ͷҰ༷࠷খࢄෆภਪఆྔʢ6.76&ʣɹ ෆภੑ ͕ͲΜͳͰ͋ͬͯɺ ͕Γཱͭɻ Ұ༷࠷খࢄੑ ͕ͲΜͳͰ͋ͬͯɺଞͷෆภਪఆྔ
ʹൺͯ ͷࢄ͕খ͍͞ɻཁ͢Δʹɺ ͕Γཱͭɻ ྫαΠζ ͷಠཱඪຊΛظ ࢄ ͷਖ਼ن͔Βಘͨ߹ ɾظ ͷ6.76&ඪຊฏۉ ɾࢄ ͷ6.76&ෆภࢄ T θ θ [T] = θ θ S T [T] ≤ [S] n μ σ2 μ σ2
6.76&ͷѻ͍͢͞ʢͦͷʣ $SBNFS3BPͷఆཧ͋Δෆภਪఆྔ͕6.76&͔ఆ͢Δํ๏ͷͻͱͭ ɾෆภਪఆྔͷࢄͷେ͖͞ͷԼݶܭࢉͰ͖Δɻ ɹɾ$SBNFS3BPԼݶ'JTIFSใྔ ɾෆภਪఆྔ ͷࢄ͕͜ͷԼݶʹҰக͢Ε6.76& ʢʣ6.76&ͷࢄ͕ඞͣ͜ͷԼݶʹͳΔΘ͚Ͱͳ͍ɻ T
6.76&ͷѻ͍͢͞ʢͦͷʣ -FINBOO4DIF⒎Fͷఆཧ6.76&ಛఆͷ݅ͷͱͰ࡞ΕΔɻ ɾಛఆͷ݅උे౷ܭྔͷଘࡏ ɾඋे౷ܭྔͰද͞ΕΔ౷ܭྔ͕ෆภͳΒ6.76& ɾ$SBNFS3BPͷఆཧ͕༗ޮͰͳ͍έʔεͰಛʹศར ɹɾ'JTIFSใྔ͕ఆٛͰ͖ͳ͍ͱ͖ʢҰ༷ͷ࠷େύϥϝʔλʣ ɹɾ6.76&ͷࢄ㱠$SBNFS3BPԼݶͷͱ͖
6.76&ඞͣଘࡏ͢Δ͔ʁ ύϥϝʔλ ͷ6.76&ඞͣଘࡏ͢Δ͔ʁ ɾ-FINBOO4DIF⒎Fͷఆཧඋे౷ܭྔ͕ଘࡏ͢Ε6.76&࡞ΕΔɻ ɾඋे౷ܭྔ͕ଘࡏ͠ͳ͚ΕͲ͏͔ʁ ɾ)JOUҰ༷࠷খࢄੑʹݱΕΔʮ ͕ͲΜͳͰ͋ͬͯʯڧ͍݅ ˠɹ ͷ͝ͱʹ࠷খࢄͷෆภਪఆྔ͕ҟͳΕɺ6.76&ଘࡏ͠ͳ͍ɻ θ
θ θ
۩ମྫͷߏ ֬ม ͕࣍ͷ࣭֬ྔؔ ʹै͍ͬͯΔͷͱ͠·͢ɻύϥϝʔλ ͷҰ༷࠷খࢄෆภਪఆྔଘࡏ͢Δ͔ʁ ٕज़తͳ3FNBSL Ͱද͞ΕΔͲΜͳ౷ܭྔɺ ͷܗͰද͢͜ͱ͕Ͱ͖Δɻ X
f(x) = { p JGx = − 1 (1 − p)2px JGx = 0,1,2,⋯ p X T(X) = ∞ ∑ x=−1 tx [X = x]
ෆภਪఆྔʹͳΔͨΊͷ݅ Λ༻͍ͯɺ౷ܭྔ ͷظΛܭࢉ͢Δɻ ౷ܭྔ ͕ෆภਪఆྔͳΒɺظඞͣ ʹ͘͠ͳΔɻ ˠɹԽࣜ GPS
ˠɹ ͷܗͰද͞ΕΔ౷ܭྔ ͕ෆภਪఆྔʹͳΔɻ f(x) = { p JGx = − 1 (1 − p)2px JGx = 0,1,2,⋯ T(X) [T] = t−1 p + ∞ ∑ x=0 tx (1 − p)2px = t0 + ∞ ∑ x=1 (tx−2 − 2tx−1 + tx )px T(X) p tx − 2tx−1 + tx−2 = 0 x ≥ 2 t1 = 1 − t−1 t0 = 0 tx = x(1 − t−1 ) T(X)
ෆภਪఆྔͷࢄΛܭࢉ͢Δʢͦͷʣ Λ༻͍ͯɺෆภਪఆྔ ͷࢄΛܭࢉ͢Δɻ ͜͏͍͏ͱ͖ʹཱͭͷࢄͷެࣜʂ ͳͷͰɺ Λܭࢉ͠Α͏ɻ f(x) = {
p JGx = − 1 (1 − p)2px JGx = 0,1,2,⋯ T(X) [T] = [T2] − [T]2 = [T2] − p2, ෆภੑ [T2]
ෆภਪఆྔͷࢄΛܭࢉ͢Δʢͦͷʣ Ώ͑ʹɺ ͷࢄ ͱΘ͔Γ·͢ɻ [T2] = t2 −1 p
+ ∞ ∑ x=1 x2(1 − t−1 )2(1 − p)2px = t−1 + (1 − t−1 )2(1 − p)2 ∞ ∑ x=1 x2px = t2 −1 p + (1 − t−1 )2(1 − p)2 p(1 + p) (1 − p)3 = t2 −1 p + (1 − t−1 )2 p(1 + p) 1 − p T(X) [T] = t2 −1 p + (1 − t−1 )2 p(1 + p) 1 − p − p2
ࢄ͕࠷খΛͱΔͨΊͷ݅ʢͦͷʣ ࠷খࢄΛ༩͑Δ ʢΛ༩͑Δ ʣΛٻΊɺ ʹґଘͳΒ6.76&ଘࡏ͠ͳ͍ɻ Λ Ͱཧ͢Δͱɺ͕࣍ؔݱΕΔɻ ฏํͯ͠ɺ࠷খΛ༩͑Δ ΛٻΊͯΈΑ͏ʂ
T(X) t−1 p [T] = t2 −1 p + (1 − t−1 )2 p(1 + p) 1 − p − p2 t−1 [T] = (p + p(1 + p) 1 − p ) t2 −1 − 2 p(1 + p) 1 − p t−1 + ( p(1 + p) 1 − p − p2 ) t−1
ࢄ͕࠷খΛͱΔͨΊͷ݅ʢͦͷʣ ฏํ͢Δͱɺ࣍ͷΑ͏ʹͳΓ·͢ɻ ࣍ؔͷͷ࠲ඪΛಡΉ͜ͱͰɺ ͷͱ͖ࢄ࠷খͱΘ͔Γ·͢ɻ [T] = (p + p(1
+ p) 1 − p ) t−1 − 1 1 + 1 − p 1 + p 2 + const . = (p + p(1 + p) 1 − p ) {t−1 − p + 1 2 } 2 + const . t−1 = p + 1 2
݁ ࢄ͕࠷খʹͳΔෆภਪఆྔ͕ύϥϝʔλ ͷʹґଘ͍ͯ͠Δɻ ˠɹ ͷ6.76&ଘࡏ͠ͳ͍ʂʂʂʂʂ ͜ͷྫ͕ڭ͑ͯ͘Ε͍ͯΔͱࢥ͏͜ͱʢࢲײʣ ɾඞͣ͠ʮ͍ͭͰ҆ఆͯ͠ਫ਼͕ྑ͍ਪఆྔʯ͕ଘࡏ͢ΔͱݶΒͳ͍ɻ ɾԾઆ͕͋ΔͳΒਪఆྔʹөͤͯ͞ΈΔͷେࣄɻ ɹɾࠓճͷྫͰɺ ͷʹԠͨ͡ਪఆྔͷબͷ༨͞Ε͍ͯΔɻ
ɹɾDMJDLখ͘͞ͳΓ͕͔ͪͩΒɺͪΐͬͱॖখͨ͠ͷΛ͓͏ͱ͔ɻ p p p
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ʂ ࣗݾհͰͬͱ͖·͢ɻɻɻ ɾ!VUBLB ɾגࣜձࣾ͢͏͕͘ͿΜ͔ ڭ෦ ෦ ɾڵຯཧ౷ܭֶͷσʔλϚΠχϯάͷԠ༻ زԿֶ ɾจ ɹओஶ(MVJOH4UBCJMJUZ$POEJUJPOTPO3VMFE4VSGBDFXJUI1PTJUJWF(FOVT
ɹɹɹɹ0TBLB+PVSOBMPG.BUIFNBUJDT BDDFQUFE ɹڞஶࠓຊɺ͍ͣΕػցֶशͷจɻ