Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
statistician_ja_lt5.pdf
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Takayuki Uchiba
November 15, 2020
Science
0
690
statistician_ja_lt5.pdf
一様最小分散不偏推定量が存在しない例を紹介しました。
Takayuki Uchiba
November 15, 2020
Tweet
Share
More Decks by Takayuki Uchiba
See All by Takayuki Uchiba
縮小推定のはなし.pdf
utaka233
1
2.6k
高次元データに対するL1正則化の有効性
utaka233
1
3.2k
Other Decks in Science
See All in Science
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
660
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
PRO
1
230
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
720
データマイニング - ウェブとグラフ
trycycle
PRO
0
240
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
880
(メタ)科学コミュニケーターからみたAI for Scienceの同床異夢
rmaruy
0
160
イロレーティングを活用した関東大学サッカーの定量的実力評価 / A quantitative performance evaluation of Kanto University Football Association using Elo rating
konakalab
0
190
My Little Monster
juzishuu
0
550
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
250
デジタルアーカイブの教育利用促進を目指したメタデータLOD基盤に関する研究 / Research on a Metadata LOD Platform for Promoting Educational Uses of Digital Archives
masao
0
150
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
Amusing Abliteration
ianozsvald
0
100
Featured
See All Featured
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
67
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
SEO Brein meetup: CTRL+C is not how to scale international SEO
lindahogenes
0
2.3k
The browser strikes back
jonoalderson
0
370
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
140
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
300
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
71k
How GitHub (no longer) Works
holman
316
140k
How to Ace a Technical Interview
jacobian
281
24k
Getting science done with accelerated Python computing platforms
jacobtomlinson
2
110
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
The Limits of Empathy - UXLibs8
cassininazir
1
210
Transcript
Ұ༷࠷খࢄෆภਪఆྔඞͣଘࡏ͢Δ͔ʁ !VUBLB
Ұ༷࠷খࢄෆภਪఆྔ ͷҰ༷࠷খࢄෆภਪఆྔʢ6.76&ʣɹ ෆภੑ ͕ͲΜͳͰ͋ͬͯɺ ͕Γཱͭɻ Ұ༷࠷খࢄੑ ͕ͲΜͳͰ͋ͬͯɺଞͷෆภਪఆྔ
ʹൺͯ ͷࢄ͕খ͍͞ɻཁ͢Δʹɺ ͕Γཱͭɻ ྫαΠζ ͷಠཱඪຊΛظ ࢄ ͷਖ਼ن͔Βಘͨ߹ ɾظ ͷ6.76&ඪຊฏۉ ɾࢄ ͷ6.76&ෆภࢄ T θ θ [T] = θ θ S T [T] ≤ [S] n μ σ2 μ σ2
6.76&ͷѻ͍͢͞ʢͦͷʣ $SBNFS3BPͷఆཧ͋Δෆภਪఆྔ͕6.76&͔ఆ͢Δํ๏ͷͻͱͭ ɾෆภਪఆྔͷࢄͷେ͖͞ͷԼݶܭࢉͰ͖Δɻ ɹɾ$SBNFS3BPԼݶ'JTIFSใྔ ɾෆภਪఆྔ ͷࢄ͕͜ͷԼݶʹҰக͢Ε6.76& ʢʣ6.76&ͷࢄ͕ඞͣ͜ͷԼݶʹͳΔΘ͚Ͱͳ͍ɻ T
6.76&ͷѻ͍͢͞ʢͦͷʣ -FINBOO4DIF⒎Fͷఆཧ6.76&ಛఆͷ݅ͷͱͰ࡞ΕΔɻ ɾಛఆͷ݅උे౷ܭྔͷଘࡏ ɾඋे౷ܭྔͰද͞ΕΔ౷ܭྔ͕ෆภͳΒ6.76& ɾ$SBNFS3BPͷఆཧ͕༗ޮͰͳ͍έʔεͰಛʹศར ɹɾ'JTIFSใྔ͕ఆٛͰ͖ͳ͍ͱ͖ʢҰ༷ͷ࠷େύϥϝʔλʣ ɹɾ6.76&ͷࢄ㱠$SBNFS3BPԼݶͷͱ͖
6.76&ඞͣଘࡏ͢Δ͔ʁ ύϥϝʔλ ͷ6.76&ඞͣଘࡏ͢Δ͔ʁ ɾ-FINBOO4DIF⒎Fͷఆཧඋे౷ܭྔ͕ଘࡏ͢Ε6.76&࡞ΕΔɻ ɾඋे౷ܭྔ͕ଘࡏ͠ͳ͚ΕͲ͏͔ʁ ɾ)JOUҰ༷࠷খࢄੑʹݱΕΔʮ ͕ͲΜͳͰ͋ͬͯʯڧ͍݅ ˠɹ ͷ͝ͱʹ࠷খࢄͷෆภਪఆྔ͕ҟͳΕɺ6.76&ଘࡏ͠ͳ͍ɻ θ
θ θ
۩ମྫͷߏ ֬ม ͕࣍ͷ࣭֬ྔؔ ʹै͍ͬͯΔͷͱ͠·͢ɻύϥϝʔλ ͷҰ༷࠷খࢄෆภਪఆྔଘࡏ͢Δ͔ʁ ٕज़తͳ3FNBSL Ͱද͞ΕΔͲΜͳ౷ܭྔɺ ͷܗͰද͢͜ͱ͕Ͱ͖Δɻ X
f(x) = { p JGx = − 1 (1 − p)2px JGx = 0,1,2,⋯ p X T(X) = ∞ ∑ x=−1 tx [X = x]
ෆภਪఆྔʹͳΔͨΊͷ݅ Λ༻͍ͯɺ౷ܭྔ ͷظΛܭࢉ͢Δɻ ౷ܭྔ ͕ෆภਪఆྔͳΒɺظඞͣ ʹ͘͠ͳΔɻ ˠɹԽࣜ GPS
ˠɹ ͷܗͰද͞ΕΔ౷ܭྔ ͕ෆภਪఆྔʹͳΔɻ f(x) = { p JGx = − 1 (1 − p)2px JGx = 0,1,2,⋯ T(X) [T] = t−1 p + ∞ ∑ x=0 tx (1 − p)2px = t0 + ∞ ∑ x=1 (tx−2 − 2tx−1 + tx )px T(X) p tx − 2tx−1 + tx−2 = 0 x ≥ 2 t1 = 1 − t−1 t0 = 0 tx = x(1 − t−1 ) T(X)
ෆภਪఆྔͷࢄΛܭࢉ͢Δʢͦͷʣ Λ༻͍ͯɺෆภਪఆྔ ͷࢄΛܭࢉ͢Δɻ ͜͏͍͏ͱ͖ʹཱͭͷࢄͷެࣜʂ ͳͷͰɺ Λܭࢉ͠Α͏ɻ f(x) = {
p JGx = − 1 (1 − p)2px JGx = 0,1,2,⋯ T(X) [T] = [T2] − [T]2 = [T2] − p2, ෆภੑ [T2]
ෆภਪఆྔͷࢄΛܭࢉ͢Δʢͦͷʣ Ώ͑ʹɺ ͷࢄ ͱΘ͔Γ·͢ɻ [T2] = t2 −1 p
+ ∞ ∑ x=1 x2(1 − t−1 )2(1 − p)2px = t−1 + (1 − t−1 )2(1 − p)2 ∞ ∑ x=1 x2px = t2 −1 p + (1 − t−1 )2(1 − p)2 p(1 + p) (1 − p)3 = t2 −1 p + (1 − t−1 )2 p(1 + p) 1 − p T(X) [T] = t2 −1 p + (1 − t−1 )2 p(1 + p) 1 − p − p2
ࢄ͕࠷খΛͱΔͨΊͷ݅ʢͦͷʣ ࠷খࢄΛ༩͑Δ ʢΛ༩͑Δ ʣΛٻΊɺ ʹґଘͳΒ6.76&ଘࡏ͠ͳ͍ɻ Λ Ͱཧ͢Δͱɺ͕࣍ؔݱΕΔɻ ฏํͯ͠ɺ࠷খΛ༩͑Δ ΛٻΊͯΈΑ͏ʂ
T(X) t−1 p [T] = t2 −1 p + (1 − t−1 )2 p(1 + p) 1 − p − p2 t−1 [T] = (p + p(1 + p) 1 − p ) t2 −1 − 2 p(1 + p) 1 − p t−1 + ( p(1 + p) 1 − p − p2 ) t−1
ࢄ͕࠷খΛͱΔͨΊͷ݅ʢͦͷʣ ฏํ͢Δͱɺ࣍ͷΑ͏ʹͳΓ·͢ɻ ࣍ؔͷͷ࠲ඪΛಡΉ͜ͱͰɺ ͷͱ͖ࢄ࠷খͱΘ͔Γ·͢ɻ [T] = (p + p(1
+ p) 1 − p ) t−1 − 1 1 + 1 − p 1 + p 2 + const . = (p + p(1 + p) 1 − p ) {t−1 − p + 1 2 } 2 + const . t−1 = p + 1 2
݁ ࢄ͕࠷খʹͳΔෆภਪఆྔ͕ύϥϝʔλ ͷʹґଘ͍ͯ͠Δɻ ˠɹ ͷ6.76&ଘࡏ͠ͳ͍ʂʂʂʂʂ ͜ͷྫ͕ڭ͑ͯ͘Ε͍ͯΔͱࢥ͏͜ͱʢࢲײʣ ɾඞͣ͠ʮ͍ͭͰ҆ఆͯ͠ਫ਼͕ྑ͍ਪఆྔʯ͕ଘࡏ͢ΔͱݶΒͳ͍ɻ ɾԾઆ͕͋ΔͳΒਪఆྔʹөͤͯ͞ΈΔͷେࣄɻ ɹɾࠓճͷྫͰɺ ͷʹԠͨ͡ਪఆྔͷબͷ༨͞Ε͍ͯΔɻ
ɹɾDMJDLখ͘͞ͳΓ͕͔ͪͩΒɺͪΐͬͱॖখͨ͠ͷΛ͓͏ͱ͔ɻ p p p
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ʂ ࣗݾհͰͬͱ͖·͢ɻɻɻ ɾ!VUBLB ɾגࣜձࣾ͢͏͕͘ͿΜ͔ ڭ෦ ෦ ɾڵຯཧ౷ܭֶͷσʔλϚΠχϯάͷԠ༻ زԿֶ ɾจ ɹओஶ(MVJOH4UBCJMJUZ$POEJUJPOTPO3VMFE4VSGBDFXJUI1PTJUJWF(FOVT
ɹɹɹɹ0TBLB+PVSOBMPG.BUIFNBUJDT BDDFQUFE ɹڞஶࠓຊɺ͍ͣΕػցֶशͷจɻ