Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
statistician_ja_lt5.pdf
Search
Takayuki Uchiba
November 15, 2020
Science
0
660
statistician_ja_lt5.pdf
一様最小分散不偏推定量が存在しない例を紹介しました。
Takayuki Uchiba
November 15, 2020
Tweet
Share
More Decks by Takayuki Uchiba
See All by Takayuki Uchiba
縮小推定のはなし.pdf
utaka233
1
2.3k
高次元データに対するL1正則化の有効性
utaka233
1
3.1k
Other Decks in Science
See All in Science
Spectral Sparsification of Hypergraphs
tasusu
0
280
FRAM - 複雑な社会技術システムの理解と分析
__ymgc__
1
120
03_草原和博_広島大学大学院人間社会科学研究科教授_デジタル_シティズンシップシティで_新たな_学び__をつくる.pdf
sip3ristex
0
260
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
130
インフラだけではない MLOps の話 @事例でわかるMLOps 機械学習の成果をスケールさせる処方箋 発売記念
icoxfog417
PRO
2
760
Pericarditis Comic
camkdraws
0
1.5k
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
3
790
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.5k
点群ライブラリPDALをGoogleColabにて実行する方法の紹介
kentaitakura
1
130
統計学入門講座 第4回スライド
techmathproject
0
100
CV_3_Keypoints
hachama
0
130
システム数理と応用分野の未来を切り拓くロードマップ・エンターテインメント(スポーツ)への応用 / Applied mathematics for sports entertainment
konakalab
1
230
Featured
See All Featured
We Have a Design System, Now What?
morganepeng
51
7.5k
Mobile First: as difficult as doing things right
swwweet
223
9.6k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
GitHub's CSS Performance
jonrohan
1030
460k
Code Review Best Practice
trishagee
67
18k
Statistics for Hackers
jakevdp
798
220k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Done Done
chrislema
183
16k
Being A Developer After 40
akosma
90
590k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
8
720
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Transcript
Ұ༷࠷খࢄෆภਪఆྔඞͣଘࡏ͢Δ͔ʁ !VUBLB
Ұ༷࠷খࢄෆภਪఆྔ ͷҰ༷࠷খࢄෆภਪఆྔʢ6.76&ʣɹ ෆภੑ ͕ͲΜͳͰ͋ͬͯɺ ͕Γཱͭɻ Ұ༷࠷খࢄੑ ͕ͲΜͳͰ͋ͬͯɺଞͷෆภਪఆྔ
ʹൺͯ ͷࢄ͕খ͍͞ɻཁ͢Δʹɺ ͕Γཱͭɻ ྫαΠζ ͷಠཱඪຊΛظ ࢄ ͷਖ਼ن͔Βಘͨ߹ ɾظ ͷ6.76&ඪຊฏۉ ɾࢄ ͷ6.76&ෆภࢄ T θ θ [T] = θ θ S T [T] ≤ [S] n μ σ2 μ σ2
6.76&ͷѻ͍͢͞ʢͦͷʣ $SBNFS3BPͷఆཧ͋Δෆภਪఆྔ͕6.76&͔ఆ͢Δํ๏ͷͻͱͭ ɾෆภਪఆྔͷࢄͷେ͖͞ͷԼݶܭࢉͰ͖Δɻ ɹɾ$SBNFS3BPԼݶ'JTIFSใྔ ɾෆภਪఆྔ ͷࢄ͕͜ͷԼݶʹҰக͢Ε6.76& ʢʣ6.76&ͷࢄ͕ඞͣ͜ͷԼݶʹͳΔΘ͚Ͱͳ͍ɻ T
6.76&ͷѻ͍͢͞ʢͦͷʣ -FINBOO4DIF⒎Fͷఆཧ6.76&ಛఆͷ݅ͷͱͰ࡞ΕΔɻ ɾಛఆͷ݅උे౷ܭྔͷଘࡏ ɾඋे౷ܭྔͰද͞ΕΔ౷ܭྔ͕ෆภͳΒ6.76& ɾ$SBNFS3BPͷఆཧ͕༗ޮͰͳ͍έʔεͰಛʹศར ɹɾ'JTIFSใྔ͕ఆٛͰ͖ͳ͍ͱ͖ʢҰ༷ͷ࠷େύϥϝʔλʣ ɹɾ6.76&ͷࢄ㱠$SBNFS3BPԼݶͷͱ͖
6.76&ඞͣଘࡏ͢Δ͔ʁ ύϥϝʔλ ͷ6.76&ඞͣଘࡏ͢Δ͔ʁ ɾ-FINBOO4DIF⒎Fͷఆཧඋे౷ܭྔ͕ଘࡏ͢Ε6.76&࡞ΕΔɻ ɾඋे౷ܭྔ͕ଘࡏ͠ͳ͚ΕͲ͏͔ʁ ɾ)JOUҰ༷࠷খࢄੑʹݱΕΔʮ ͕ͲΜͳͰ͋ͬͯʯڧ͍݅ ˠɹ ͷ͝ͱʹ࠷খࢄͷෆภਪఆྔ͕ҟͳΕɺ6.76&ଘࡏ͠ͳ͍ɻ θ
θ θ
۩ମྫͷߏ ֬ม ͕࣍ͷ࣭֬ྔؔ ʹै͍ͬͯΔͷͱ͠·͢ɻύϥϝʔλ ͷҰ༷࠷খࢄෆภਪఆྔଘࡏ͢Δ͔ʁ ٕज़తͳ3FNBSL Ͱද͞ΕΔͲΜͳ౷ܭྔɺ ͷܗͰද͢͜ͱ͕Ͱ͖Δɻ X
f(x) = { p JGx = − 1 (1 − p)2px JGx = 0,1,2,⋯ p X T(X) = ∞ ∑ x=−1 tx [X = x]
ෆภਪఆྔʹͳΔͨΊͷ݅ Λ༻͍ͯɺ౷ܭྔ ͷظΛܭࢉ͢Δɻ ౷ܭྔ ͕ෆภਪఆྔͳΒɺظඞͣ ʹ͘͠ͳΔɻ ˠɹԽࣜ GPS
ˠɹ ͷܗͰද͞ΕΔ౷ܭྔ ͕ෆภਪఆྔʹͳΔɻ f(x) = { p JGx = − 1 (1 − p)2px JGx = 0,1,2,⋯ T(X) [T] = t−1 p + ∞ ∑ x=0 tx (1 − p)2px = t0 + ∞ ∑ x=1 (tx−2 − 2tx−1 + tx )px T(X) p tx − 2tx−1 + tx−2 = 0 x ≥ 2 t1 = 1 − t−1 t0 = 0 tx = x(1 − t−1 ) T(X)
ෆภਪఆྔͷࢄΛܭࢉ͢Δʢͦͷʣ Λ༻͍ͯɺෆภਪఆྔ ͷࢄΛܭࢉ͢Δɻ ͜͏͍͏ͱ͖ʹཱͭͷࢄͷެࣜʂ ͳͷͰɺ Λܭࢉ͠Α͏ɻ f(x) = {
p JGx = − 1 (1 − p)2px JGx = 0,1,2,⋯ T(X) [T] = [T2] − [T]2 = [T2] − p2, ෆภੑ [T2]
ෆภਪఆྔͷࢄΛܭࢉ͢Δʢͦͷʣ Ώ͑ʹɺ ͷࢄ ͱΘ͔Γ·͢ɻ [T2] = t2 −1 p
+ ∞ ∑ x=1 x2(1 − t−1 )2(1 − p)2px = t−1 + (1 − t−1 )2(1 − p)2 ∞ ∑ x=1 x2px = t2 −1 p + (1 − t−1 )2(1 − p)2 p(1 + p) (1 − p)3 = t2 −1 p + (1 − t−1 )2 p(1 + p) 1 − p T(X) [T] = t2 −1 p + (1 − t−1 )2 p(1 + p) 1 − p − p2
ࢄ͕࠷খΛͱΔͨΊͷ݅ʢͦͷʣ ࠷খࢄΛ༩͑Δ ʢΛ༩͑Δ ʣΛٻΊɺ ʹґଘͳΒ6.76&ଘࡏ͠ͳ͍ɻ Λ Ͱཧ͢Δͱɺ͕࣍ؔݱΕΔɻ ฏํͯ͠ɺ࠷খΛ༩͑Δ ΛٻΊͯΈΑ͏ʂ
T(X) t−1 p [T] = t2 −1 p + (1 − t−1 )2 p(1 + p) 1 − p − p2 t−1 [T] = (p + p(1 + p) 1 − p ) t2 −1 − 2 p(1 + p) 1 − p t−1 + ( p(1 + p) 1 − p − p2 ) t−1
ࢄ͕࠷খΛͱΔͨΊͷ݅ʢͦͷʣ ฏํ͢Δͱɺ࣍ͷΑ͏ʹͳΓ·͢ɻ ࣍ؔͷͷ࠲ඪΛಡΉ͜ͱͰɺ ͷͱ͖ࢄ࠷খͱΘ͔Γ·͢ɻ [T] = (p + p(1
+ p) 1 − p ) t−1 − 1 1 + 1 − p 1 + p 2 + const . = (p + p(1 + p) 1 − p ) {t−1 − p + 1 2 } 2 + const . t−1 = p + 1 2
݁ ࢄ͕࠷খʹͳΔෆภਪఆྔ͕ύϥϝʔλ ͷʹґଘ͍ͯ͠Δɻ ˠɹ ͷ6.76&ଘࡏ͠ͳ͍ʂʂʂʂʂ ͜ͷྫ͕ڭ͑ͯ͘Ε͍ͯΔͱࢥ͏͜ͱʢࢲײʣ ɾඞͣ͠ʮ͍ͭͰ҆ఆͯ͠ਫ਼͕ྑ͍ਪఆྔʯ͕ଘࡏ͢ΔͱݶΒͳ͍ɻ ɾԾઆ͕͋ΔͳΒਪఆྔʹөͤͯ͞ΈΔͷେࣄɻ ɹɾࠓճͷྫͰɺ ͷʹԠͨ͡ਪఆྔͷબͷ༨͞Ε͍ͯΔɻ
ɹɾDMJDLখ͘͞ͳΓ͕͔ͪͩΒɺͪΐͬͱॖখͨ͠ͷΛ͓͏ͱ͔ɻ p p p
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ʂ ࣗݾհͰͬͱ͖·͢ɻɻɻ ɾ!VUBLB ɾגࣜձࣾ͢͏͕͘ͿΜ͔ ڭ෦ ෦ ɾڵຯཧ౷ܭֶͷσʔλϚΠχϯάͷԠ༻ زԿֶ ɾจ ɹओஶ(MVJOH4UBCJMJUZ$POEJUJPOTPO3VMFE4VSGBDFXJUI1PTJUJWF(FOVT
ɹɹɹɹ0TBLB+PVSOBMPG.BUIFNBUJDT BDDFQUFE ɹڞஶࠓຊɺ͍ͣΕػցֶशͷจɻ