Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
statistician_ja_lt5.pdf
Search
Takayuki Uchiba
November 15, 2020
Science
0
670
statistician_ja_lt5.pdf
一様最小分散不偏推定量が存在しない例を紹介しました。
Takayuki Uchiba
November 15, 2020
Tweet
Share
More Decks by Takayuki Uchiba
See All by Takayuki Uchiba
縮小推定のはなし.pdf
utaka233
1
2.4k
高次元データに対するL1正則化の有効性
utaka233
1
3.1k
Other Decks in Science
See All in Science
機械学習 - DBSCAN
trycycle
PRO
0
920
MoveItを使った産業用ロボット向け動作作成方法の紹介 / Introduction to creating motion for industrial robots using MoveIt
ry0_ka
0
510
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
500
Cross-Media Information Spaces and Architectures (CISA)
signer
PRO
3
31k
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
4
930
高校生就活へのDA導入の提案
shunyanoda
0
490
Introd_Img_Process_2_Frequ
hachama
0
570
データベース10: 拡張実体関連モデル
trycycle
PRO
0
730
点群ライブラリPDALをGoogleColabにて実行する方法の紹介
kentaitakura
1
310
サイゼミ用因果推論
lw
1
7.3k
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
280
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
220
Featured
See All Featured
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
700
Scaling GitHub
holman
460
140k
Site-Speed That Sticks
csswizardry
10
690
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
281
13k
Adopting Sorbet at Scale
ufuk
77
9.5k
Become a Pro
speakerdeck
PRO
29
5.4k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.3k
Docker and Python
trallard
44
3.5k
KATA
mclloyd
30
14k
Unsuck your backbone
ammeep
671
58k
Transcript
Ұ༷࠷খࢄෆภਪఆྔඞͣଘࡏ͢Δ͔ʁ !VUBLB
Ұ༷࠷খࢄෆภਪఆྔ ͷҰ༷࠷খࢄෆภਪఆྔʢ6.76&ʣɹ ෆภੑ ͕ͲΜͳͰ͋ͬͯɺ ͕Γཱͭɻ Ұ༷࠷খࢄੑ ͕ͲΜͳͰ͋ͬͯɺଞͷෆภਪఆྔ
ʹൺͯ ͷࢄ͕খ͍͞ɻཁ͢Δʹɺ ͕Γཱͭɻ ྫαΠζ ͷಠཱඪຊΛظ ࢄ ͷਖ਼ن͔Βಘͨ߹ ɾظ ͷ6.76&ඪຊฏۉ ɾࢄ ͷ6.76&ෆภࢄ T θ θ [T] = θ θ S T [T] ≤ [S] n μ σ2 μ σ2
6.76&ͷѻ͍͢͞ʢͦͷʣ $SBNFS3BPͷఆཧ͋Δෆภਪఆྔ͕6.76&͔ఆ͢Δํ๏ͷͻͱͭ ɾෆภਪఆྔͷࢄͷେ͖͞ͷԼݶܭࢉͰ͖Δɻ ɹɾ$SBNFS3BPԼݶ'JTIFSใྔ ɾෆภਪఆྔ ͷࢄ͕͜ͷԼݶʹҰக͢Ε6.76& ʢʣ6.76&ͷࢄ͕ඞͣ͜ͷԼݶʹͳΔΘ͚Ͱͳ͍ɻ T
6.76&ͷѻ͍͢͞ʢͦͷʣ -FINBOO4DIF⒎Fͷఆཧ6.76&ಛఆͷ݅ͷͱͰ࡞ΕΔɻ ɾಛఆͷ݅උे౷ܭྔͷଘࡏ ɾඋे౷ܭྔͰද͞ΕΔ౷ܭྔ͕ෆภͳΒ6.76& ɾ$SBNFS3BPͷఆཧ͕༗ޮͰͳ͍έʔεͰಛʹศར ɹɾ'JTIFSใྔ͕ఆٛͰ͖ͳ͍ͱ͖ʢҰ༷ͷ࠷େύϥϝʔλʣ ɹɾ6.76&ͷࢄ㱠$SBNFS3BPԼݶͷͱ͖
6.76&ඞͣଘࡏ͢Δ͔ʁ ύϥϝʔλ ͷ6.76&ඞͣଘࡏ͢Δ͔ʁ ɾ-FINBOO4DIF⒎Fͷఆཧඋे౷ܭྔ͕ଘࡏ͢Ε6.76&࡞ΕΔɻ ɾඋे౷ܭྔ͕ଘࡏ͠ͳ͚ΕͲ͏͔ʁ ɾ)JOUҰ༷࠷খࢄੑʹݱΕΔʮ ͕ͲΜͳͰ͋ͬͯʯڧ͍݅ ˠɹ ͷ͝ͱʹ࠷খࢄͷෆภਪఆྔ͕ҟͳΕɺ6.76&ଘࡏ͠ͳ͍ɻ θ
θ θ
۩ମྫͷߏ ֬ม ͕࣍ͷ࣭֬ྔؔ ʹै͍ͬͯΔͷͱ͠·͢ɻύϥϝʔλ ͷҰ༷࠷খࢄෆภਪఆྔଘࡏ͢Δ͔ʁ ٕज़తͳ3FNBSL Ͱද͞ΕΔͲΜͳ౷ܭྔɺ ͷܗͰද͢͜ͱ͕Ͱ͖Δɻ X
f(x) = { p JGx = − 1 (1 − p)2px JGx = 0,1,2,⋯ p X T(X) = ∞ ∑ x=−1 tx [X = x]
ෆภਪఆྔʹͳΔͨΊͷ݅ Λ༻͍ͯɺ౷ܭྔ ͷظΛܭࢉ͢Δɻ ౷ܭྔ ͕ෆภਪఆྔͳΒɺظඞͣ ʹ͘͠ͳΔɻ ˠɹԽࣜ GPS
ˠɹ ͷܗͰද͞ΕΔ౷ܭྔ ͕ෆภਪఆྔʹͳΔɻ f(x) = { p JGx = − 1 (1 − p)2px JGx = 0,1,2,⋯ T(X) [T] = t−1 p + ∞ ∑ x=0 tx (1 − p)2px = t0 + ∞ ∑ x=1 (tx−2 − 2tx−1 + tx )px T(X) p tx − 2tx−1 + tx−2 = 0 x ≥ 2 t1 = 1 − t−1 t0 = 0 tx = x(1 − t−1 ) T(X)
ෆภਪఆྔͷࢄΛܭࢉ͢Δʢͦͷʣ Λ༻͍ͯɺෆภਪఆྔ ͷࢄΛܭࢉ͢Δɻ ͜͏͍͏ͱ͖ʹཱͭͷࢄͷެࣜʂ ͳͷͰɺ Λܭࢉ͠Α͏ɻ f(x) = {
p JGx = − 1 (1 − p)2px JGx = 0,1,2,⋯ T(X) [T] = [T2] − [T]2 = [T2] − p2, ෆภੑ [T2]
ෆภਪఆྔͷࢄΛܭࢉ͢Δʢͦͷʣ Ώ͑ʹɺ ͷࢄ ͱΘ͔Γ·͢ɻ [T2] = t2 −1 p
+ ∞ ∑ x=1 x2(1 − t−1 )2(1 − p)2px = t−1 + (1 − t−1 )2(1 − p)2 ∞ ∑ x=1 x2px = t2 −1 p + (1 − t−1 )2(1 − p)2 p(1 + p) (1 − p)3 = t2 −1 p + (1 − t−1 )2 p(1 + p) 1 − p T(X) [T] = t2 −1 p + (1 − t−1 )2 p(1 + p) 1 − p − p2
ࢄ͕࠷খΛͱΔͨΊͷ݅ʢͦͷʣ ࠷খࢄΛ༩͑Δ ʢΛ༩͑Δ ʣΛٻΊɺ ʹґଘͳΒ6.76&ଘࡏ͠ͳ͍ɻ Λ Ͱཧ͢Δͱɺ͕࣍ؔݱΕΔɻ ฏํͯ͠ɺ࠷খΛ༩͑Δ ΛٻΊͯΈΑ͏ʂ
T(X) t−1 p [T] = t2 −1 p + (1 − t−1 )2 p(1 + p) 1 − p − p2 t−1 [T] = (p + p(1 + p) 1 − p ) t2 −1 − 2 p(1 + p) 1 − p t−1 + ( p(1 + p) 1 − p − p2 ) t−1
ࢄ͕࠷খΛͱΔͨΊͷ݅ʢͦͷʣ ฏํ͢Δͱɺ࣍ͷΑ͏ʹͳΓ·͢ɻ ࣍ؔͷͷ࠲ඪΛಡΉ͜ͱͰɺ ͷͱ͖ࢄ࠷খͱΘ͔Γ·͢ɻ [T] = (p + p(1
+ p) 1 − p ) t−1 − 1 1 + 1 − p 1 + p 2 + const . = (p + p(1 + p) 1 − p ) {t−1 − p + 1 2 } 2 + const . t−1 = p + 1 2
݁ ࢄ͕࠷খʹͳΔෆภਪఆྔ͕ύϥϝʔλ ͷʹґଘ͍ͯ͠Δɻ ˠɹ ͷ6.76&ଘࡏ͠ͳ͍ʂʂʂʂʂ ͜ͷྫ͕ڭ͑ͯ͘Ε͍ͯΔͱࢥ͏͜ͱʢࢲײʣ ɾඞͣ͠ʮ͍ͭͰ҆ఆͯ͠ਫ਼͕ྑ͍ਪఆྔʯ͕ଘࡏ͢ΔͱݶΒͳ͍ɻ ɾԾઆ͕͋ΔͳΒਪఆྔʹөͤͯ͞ΈΔͷେࣄɻ ɹɾࠓճͷྫͰɺ ͷʹԠͨ͡ਪఆྔͷબͷ༨͞Ε͍ͯΔɻ
ɹɾDMJDLখ͘͞ͳΓ͕͔ͪͩΒɺͪΐͬͱॖখͨ͠ͷΛ͓͏ͱ͔ɻ p p p
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ʂ ࣗݾհͰͬͱ͖·͢ɻɻɻ ɾ!VUBLB ɾגࣜձࣾ͢͏͕͘ͿΜ͔ ڭ෦ ෦ ɾڵຯཧ౷ܭֶͷσʔλϚΠχϯάͷԠ༻ زԿֶ ɾจ ɹओஶ(MVJOH4UBCJMJUZ$POEJUJPOTPO3VMFE4VSGBDFXJUI1PTJUJWF(FOVT
ɹɹɹɹ0TBLB+PVSOBMPG.BUIFNBUJDT BDDFQUFE ɹڞஶࠓຊɺ͍ͣΕػցֶशͷจɻ