Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
高次元データに対するL1正則化の有効性
Search
Takayuki Uchiba
December 14, 2018
Technology
1
3.2k
高次元データに対するL1正則化の有効性
高次元データに対してよく用いられるL1正則化、特にLasso回帰の有効性について数理統計的にわかっている話を少しだけサマリーしました。
Takayuki Uchiba
December 14, 2018
Tweet
Share
More Decks by Takayuki Uchiba
See All by Takayuki Uchiba
statistician_ja_lt5.pdf
utaka233
0
680
縮小推定のはなし.pdf
utaka233
1
2.5k
Other Decks in Technology
See All in Technology
仕様駆動開発を実現する上流工程におけるAIエージェント活用
sergicalsix
12
5.9k
GPUをつかってベクトル検索を扱う手法のお話し~NVIDIA cuVSとCAGRA~
fshuhe
0
390
AIがコードを書いてくれるなら、新米エンジニアは何をする? / komekaigi2025
nkzn
25
17k
アノテーション作業書作成のGood Practice
cierpa0905
PRO
1
410
SREのキャリアから経営に近づく - Enterprise Risk Managementを基に -
shonansurvivors
1
740
AWS re:Invent 2025事前勉強会資料 / AWS re:Invent 2025 pre study meetup
kinunori
0
1.1k
プロダクトエンジニアとしてのマインドセットの育み方 / How to improve product engineer mindset
saka2jp
1
180
短期間でRAGシステムを実現 お客様と歩んだ生成AI内製化への道のり
taka0709
1
190
Raycast AI APIを使ってちょっと便利なAI拡張機能を作ってみた
kawamataryo
1
250
ざっくり学ぶ 『エンジニアリングリーダー 技術組織を育てるリーダーシップと セルフマネジメント』 / 50 minute Engineering Leader
iwashi86
9
4.5k
LLM APIを2年間本番運用して苦労した話
ivry_presentationmaterials
10
8.5k
最近読んで良かった本 / Yokohama North Meetup #10
mktakuya
0
900
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
97
6.3k
It's Worth the Effort
3n
187
28k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
192
56k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
Speed Design
sergeychernyshev
32
1.2k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
950
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
Agile that works and the tools we love
rasmusluckow
331
21k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
Facilitating Awesome Meetings
lara
57
6.6k
Transcript
ߴ࣍ݩσʔλʹର͢Δ-ਖ਼ଇԽͷ༗ޮੑ !VUBLB ػցֶशͷཧ"EWFOU$BMFOEBS
എܠ ߴ࣍ݩσʔλ ɾೖྗมͷݸEαϯϓϧαΠζO ɾྫɿηϯαʔσʔλ࣍ੈγʔέϯαʔʹΑΔήϊϜྻσʔλͳͲ ߴ࣍ݩσʔλʹ͓͚Δ༧ଌ ɾදྫઢܗճؼϞσϧɿ ɹɹɾฏۉଛࣦ࠷খԽਪఆྔɿਖ਼نํఔࣜͷղ ɹɹɹߴ࣍ݩσʔλͰɺਖ਼نํఔࣜͷղͷҰҙੑΛظͰ͖ͳ͍ɻ ɹɹɹͳͥͳΒɺਖ਼نํఔࣜͷղ͕ҰҙͰ͋ΔͨΊʹ ɹɹɹཁߦྻ͕GVMMSBOLͰ͋Δඞཁ͕͋Δɻͱ͜Ζ͕ɺ
ɹɹɹͳͷͰɺߴ࣍ݩσʔλͰҰൠʹΓཱͨͣແݶʹղΛڐ͠ಘΔɻ y = Xw + ϵ, ϵ ∼ N(0,σ2En ) XT Xw = XTy rankXT X = n rankXT X = rankX ̂ w = argmin 1 2n ||y − Xw||2 2 ˠ
ઢܗճؼϞσϧʹ͓͚Δ-ਖ਼ଇԽʢ-BTTPճؼʣ ߴ࣍ݩσʔλʹ͓͚ΔઢܗճؼϞσϧ ɾूஂϞσϧʹఆ͢ΔԾઆɿճؼ͕εύʔεϕΫτϧͰ͋Δͱ͍͏ظ ɾ-BTTPճؼɿ-ਖ਼ଇԽʹΑΔεύʔεਪఆ ɹɾฏۉ̎ଛࣦ࠷খԽΛҎԼͷΑ͏ʹमਖ਼͢Δɻ ɹɹ͜ΕɺҎԼͷΑ͏ͳ੍͖࠷దԽͱಉͰ͋Δɻ ɹɹతؔͷತੑ͔Βղଘࡏͯ͠ҰҙʹͳΔɻ ɹɹ͞Βʹɺ੍݅ͷܗ͔Βղ͕εύʔεϕΫτϧʹͳΔ͜ͱ͕ظͰ͖Δɻ ̂ w
= argmin 1 2n ||y − Xw||2 2 + λn ||w|| 1 min 1 2n ||y − Xw||2 2 s . t . ||w|| 1 ≤ C
հ͢Δఆཧ ఆཧɿ</FHBICBO3BWJLVNBS8BJOXSJHIU:V $PSPMMBSZ> ूஂ͕ઢܗճؼϞσϧͰɺಛʹճؼɹ͕Lεύʔεͱ͠·͢ɻ ·ͨɺೖྗมEྻͰಠཱʹඪ४ਖ਼نʹै͍ͬͯΔͱ͠·͠ΐ͏ɻ͍· αΠζOͷඪຊΛऔͬͨ࣌ɺ ΛΈͨ͢ेେ͖ͳਖ਼ͷD͕͋Δͱ͠·͢ɻ͜ͷͱ͖ɺਖ਼ଇԽύϥϝʔλΛ ΛΈͨ͢Α͏ʹͱΕ-BTTPճؼʹΑͬͯಘΒΕΔϕΫτϧɹগͳ͘ͱ֬ ͰҎԼͷධՁΛΈͨ͢ɻ͜͜Ͱɺ$ఆͱ͢Δɻ
w* ̂ w n ≥ ck log(d) λn ≥ 8σ log(d)/n 1 − 1/d − O(exp(−n/2)) || ̂ w − w*||2 2 ≤ C kσ2 log(d) n
հ͢Δఆཧͷओு ཁ͢Δʹɺ ɾूஂ͕ઢܗճؼϞσϧͰճؼ͕ेʹεύʔεϕΫτϧͰ͋Δɻ ɾೖྗۭ͕ؒेʹߴ࣍ݩʹͳ͍ͬͯΔɻ ͷͰ͋Εɺेʹେ͖ͳਖ਼ଇԽύϥϝʔλΛΈͨ͢Α͏ʹͱΔ͜ͱͰɺ-BTTP ճؼͷਪఆྔͷฏۉޡࠩ ɾ࣍ݩʹରͯ͠ରతʹ͔͠ґଘ͠ͳ͍ɻʢ࣍ݩͷґଘ͕͍ʂʣ ɾճؼͷεύʔεੑɺޡࠩͷࢄɺαϯϓϧαΠζʹઢܗʹґଘ͢Δɻ ͱ͍͏ධՁΛ༩͍͑ͯΔɻ
ূ໌ͷͨΊͷ४උ Ωʔϫʔυɿ੍ݶڧತੑ 34$DPOEJUJPO αΠζɹɹͷߦྻ9ʹରͯ͠ɺू߹$ S Λ࣍ͷΑ͏ʹఆٛ͠·͢ɻ ਖ਼ͷఆɹ͕ଘࡏͯ͠ɺҙͷ$ S ͷݩ϶ʹରͯ͠ҎԼͷෆࣜ
ཱ͕͢Δͱ͖ɺߦྻ9$ S ʹ੍ؔͯ͠ݶڧತੑΛΈͨ͢ͱݴ͍·͢ɻ n × d C(r) = { Δ ∈ ℝd ∣ Δ ≠ 0, ||Δ|| 1 ||Δ|| 2 ≤ r } 1 n ||XΔ||2 2 ≥ κ||Δ||2 2 κ
੍ݶڧತੑͷͱͰͷ-BTTPਪఆྔͷྑ͞ ิɿ</FHBICBO3BWJLVNBS8BJOXSJHIU:V 5IFPSFN> ूஂʹର͢ΔԾఆɺఆཧͱ·ͬͨ͘ಉ͡Ͱ͋Δͱ͢Δɻ͠ਖ਼ͷఆD Λͱͬͯɺߦྻ9͕ू߹ɹɹɹɹɹɹɹʹରͯ͠ఆɹͰڧತੑΛ࣋ͭͱ͢Δɻ ͜ͷͱ͖ɺҙͷਖ਼ͷLʹରͯ͠ Ͱ͋Εɺਖ਼ଇԽύϥϝʔλ͕ɹɹɹɹɹɹɹɹͷ-BTTPճؼʹΑͬͯಘΒΕΔ ਪఆྔҎԼͷධՁΛຬͨ͠·͢ɻ C(8
n/(c log d)) κ n ≥ ck log(d) λn ≥ 2||XTϵ|| ∞ /n || ̂ w − w*||2 2 ≤ 9kλn κ2 ͜ͷධՁͩͱ͋·Γخ͕͠͞Θ͔Βͳ͍ɻ
ศརͳෆࣜ ิɿ<3BTLVUUJ8BJOXSJHIU:V 1SPQPTJUJPO> αΠζɹɹͷߦྻ9ͷ֤ߦ͕ಠཱʹଟมྔਖ਼ن/ Є ʹैͬͯಘΒΕΔͱ͖ ਖ਼ͷఆD D`͕ଘࡏͯ͠ɺҙͷE࣍ݩϕΫτϧWʹରͯ͠গͳ͘ͱ֬
ͰҎԼͷධՁ͕Γཱͪ·͢ɻͨͩ͠ɺ4ೖྗมͷඪ४ภࠩͷ࠷େͰ͢ɻ n × d 1 − c exp(−c′n) ||Xv|| 2 n ≥ 1 4 ||Σ1/2v|| 2 − 9S log(d) n ||v|| 1
ఆཧͷূ໌ 3BTLVUUJ8BJOXSJHIU:Vͷෆ͔ࣜΒ ΛಘΔɻͦ͜ͰɺɹɹɹɹɹɹɹɹͳͷͰɺఆDΛेେ͖͘ͱΕΕ ੍ݶڧತੑ͕গͳ͘ͱ֬ɹɹɹɹɹɹɹͰΓཱͭ͜ͱ͕Θ͔Γ·͢ɻ ͜͜ͰɺࠓͱͬͨఆD͕ɹɹɹɹɹɹΈͨ͢ͱԾఆͯ͠ɺ /FHBICBO3BWJLVNBS8BJOXSJHIU:VͷఆཧΛߟ͑·͢ɻਖ਼ଇԽύϥϝʔλͷ ͔݅Βɺগͳ͘ͱ֬ Ͱਪఆྔʹؔ͢ΔఆཧͷධՁΛಘΔɻҎ্ͰఆཧΛূ໌Ͱ͖ͨɻ ||Xv|| 2
n ≥ 1 4 ( 1 − 36 log(d) n ||v|| 1 ||v|| 2 ) v ∈ C(8 n/(c log d)) 1 − c exp(−c′n) n ≥ ck log(d) P [ ||XTϵ|| ∞ ≤ 8σ2n log(d)] ≥ 1 − 1 d − exp (− n 2 )
ࢀߟจݙ <>3BTLVUUJ8BJOXSJHIU:V .JOJNBYSBUFTPGFTUJNBUJPOGPSIJHI EJNFOTJPOBMMJOFBSSFHSFTTJPOPWFSMRCBMMT *&&&5SBOTBDUJPO PO*OGPSNBUJPO5IFPSZ <>/FHBICBO3BWJLVNBS8BJOXSJHIU:V "6OJpFE'SBNFXPSLGPS )JHI%JNFOTJPOBM"OBMZTJTPG.&TUJNBUPSTXJUI%FDPNQPTBCMF
3FHVMBSJ[FST 4UBUJTUJDBM4DJFODF 7PM /P <>Ԭ྄ଠ εύʔεੑʹجͮ͘ػցֶश ػցֶशϓϩϑΣογϣφϧ γϦʔζ ߨஊࣾ