Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
高次元データに対するL1正則化の有効性
Search
Takayuki Uchiba
December 14, 2018
Technology
1
3k
高次元データに対するL1正則化の有効性
高次元データに対してよく用いられるL1正則化、特にLasso回帰の有効性について数理統計的にわかっている話を少しだけサマリーしました。
Takayuki Uchiba
December 14, 2018
Tweet
Share
More Decks by Takayuki Uchiba
See All by Takayuki Uchiba
statistician_ja_lt5.pdf
utaka233
0
650
縮小推定のはなし.pdf
utaka233
1
2.3k
Other Decks in Technology
See All in Technology
データエンジニアリング領域におけるDuckDBのユースケース
chanyou0311
9
2.6k
アジリティを高めるテストマネジメント #QiitaQualityForward
makky_tyuyan
1
120
技術スタックだけじゃない、業務ドメイン知識のオンボーディングも同じくらいの量が必要な話
niftycorp
PRO
0
130
Snowflake ML モデルを dbt データパイプラインに組み込む
estie
0
110
Qiita Organizationを導入したら、アウトプッターが爆増して会社がちょっと有名になった件
minorun365
PRO
1
310
Introduction to OpenSearch Project - Search Engineering Tech Talk 2025 Winter
tkykenmt
2
220
ExaDB-XSで利用されているExadata Exascaleについて
oracle4engineer
PRO
3
300
Platform Engineeringで クラウドの「楽しくない」を解消しよう
jacopen
4
200
Amazon Q Developerの無料利用枠を使い倒してHello worldを表示させよう!
nrinetcom
PRO
2
120
事業を差別化する技術を生み出す技術
pyama86
2
510
クラウド食堂とは?
hiyanger
0
130
クラウド関連のインシデントケースを収集して見えてきたもの
lhazy
9
1.9k
Featured
See All Featured
Agile that works and the tools we love
rasmusluckow
328
21k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
27
1.9k
Adopting Sorbet at Scale
ufuk
75
9.2k
Making Projects Easy
brettharned
116
6k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
120k
Music & Morning Musume
bryan
46
6.4k
Embracing the Ebb and Flow
colly
84
4.6k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.2k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.4k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Practical Orchestrator
shlominoach
186
10k
Transcript
ߴ࣍ݩσʔλʹର͢Δ-ਖ਼ଇԽͷ༗ޮੑ !VUBLB ػցֶशͷཧ"EWFOU$BMFOEBS
എܠ ߴ࣍ݩσʔλ ɾೖྗมͷݸEαϯϓϧαΠζO ɾྫɿηϯαʔσʔλ࣍ੈγʔέϯαʔʹΑΔήϊϜྻσʔλͳͲ ߴ࣍ݩσʔλʹ͓͚Δ༧ଌ ɾදྫઢܗճؼϞσϧɿ ɹɹɾฏۉଛࣦ࠷খԽਪఆྔɿਖ਼نํఔࣜͷղ ɹɹɹߴ࣍ݩσʔλͰɺਖ਼نํఔࣜͷղͷҰҙੑΛظͰ͖ͳ͍ɻ ɹɹɹͳͥͳΒɺਖ਼نํఔࣜͷղ͕ҰҙͰ͋ΔͨΊʹ ɹɹɹཁߦྻ͕GVMMSBOLͰ͋Δඞཁ͕͋Δɻͱ͜Ζ͕ɺ
ɹɹɹͳͷͰɺߴ࣍ݩσʔλͰҰൠʹΓཱͨͣແݶʹղΛڐ͠ಘΔɻ y = Xw + ϵ, ϵ ∼ N(0,σ2En ) XT Xw = XTy rankXT X = n rankXT X = rankX ̂ w = argmin 1 2n ||y − Xw||2 2 ˠ
ઢܗճؼϞσϧʹ͓͚Δ-ਖ਼ଇԽʢ-BTTPճؼʣ ߴ࣍ݩσʔλʹ͓͚ΔઢܗճؼϞσϧ ɾूஂϞσϧʹఆ͢ΔԾઆɿճؼ͕εύʔεϕΫτϧͰ͋Δͱ͍͏ظ ɾ-BTTPճؼɿ-ਖ਼ଇԽʹΑΔεύʔεਪఆ ɹɾฏۉ̎ଛࣦ࠷খԽΛҎԼͷΑ͏ʹमਖ਼͢Δɻ ɹɹ͜ΕɺҎԼͷΑ͏ͳ੍͖࠷దԽͱಉͰ͋Δɻ ɹɹతؔͷತੑ͔Βղଘࡏͯ͠ҰҙʹͳΔɻ ɹɹ͞Βʹɺ੍݅ͷܗ͔Βղ͕εύʔεϕΫτϧʹͳΔ͜ͱ͕ظͰ͖Δɻ ̂ w
= argmin 1 2n ||y − Xw||2 2 + λn ||w|| 1 min 1 2n ||y − Xw||2 2 s . t . ||w|| 1 ≤ C
հ͢Δఆཧ ఆཧɿ</FHBICBO3BWJLVNBS8BJOXSJHIU:V $PSPMMBSZ> ूஂ͕ઢܗճؼϞσϧͰɺಛʹճؼɹ͕Lεύʔεͱ͠·͢ɻ ·ͨɺೖྗมEྻͰಠཱʹඪ४ਖ਼نʹै͍ͬͯΔͱ͠·͠ΐ͏ɻ͍· αΠζOͷඪຊΛऔͬͨ࣌ɺ ΛΈͨ͢ेେ͖ͳਖ਼ͷD͕͋Δͱ͠·͢ɻ͜ͷͱ͖ɺਖ਼ଇԽύϥϝʔλΛ ΛΈͨ͢Α͏ʹͱΕ-BTTPճؼʹΑͬͯಘΒΕΔϕΫτϧɹগͳ͘ͱ֬ ͰҎԼͷධՁΛΈͨ͢ɻ͜͜Ͱɺ$ఆͱ͢Δɻ
w* ̂ w n ≥ ck log(d) λn ≥ 8σ log(d)/n 1 − 1/d − O(exp(−n/2)) || ̂ w − w*||2 2 ≤ C kσ2 log(d) n
հ͢Δఆཧͷओு ཁ͢Δʹɺ ɾूஂ͕ઢܗճؼϞσϧͰճؼ͕ेʹεύʔεϕΫτϧͰ͋Δɻ ɾೖྗۭ͕ؒेʹߴ࣍ݩʹͳ͍ͬͯΔɻ ͷͰ͋Εɺेʹେ͖ͳਖ਼ଇԽύϥϝʔλΛΈͨ͢Α͏ʹͱΔ͜ͱͰɺ-BTTP ճؼͷਪఆྔͷฏۉޡࠩ ɾ࣍ݩʹରͯ͠ରతʹ͔͠ґଘ͠ͳ͍ɻʢ࣍ݩͷґଘ͕͍ʂʣ ɾճؼͷεύʔεੑɺޡࠩͷࢄɺαϯϓϧαΠζʹઢܗʹґଘ͢Δɻ ͱ͍͏ධՁΛ༩͍͑ͯΔɻ
ূ໌ͷͨΊͷ४උ Ωʔϫʔυɿ੍ݶڧತੑ 34$DPOEJUJPO αΠζɹɹͷߦྻ9ʹରͯ͠ɺू߹$ S Λ࣍ͷΑ͏ʹఆٛ͠·͢ɻ ਖ਼ͷఆɹ͕ଘࡏͯ͠ɺҙͷ$ S ͷݩ϶ʹରͯ͠ҎԼͷෆࣜ
ཱ͕͢Δͱ͖ɺߦྻ9$ S ʹ੍ؔͯ͠ݶڧತੑΛΈͨ͢ͱݴ͍·͢ɻ n × d C(r) = { Δ ∈ ℝd ∣ Δ ≠ 0, ||Δ|| 1 ||Δ|| 2 ≤ r } 1 n ||XΔ||2 2 ≥ κ||Δ||2 2 κ
੍ݶڧತੑͷͱͰͷ-BTTPਪఆྔͷྑ͞ ิɿ</FHBICBO3BWJLVNBS8BJOXSJHIU:V 5IFPSFN> ूஂʹର͢ΔԾఆɺఆཧͱ·ͬͨ͘ಉ͡Ͱ͋Δͱ͢Δɻ͠ਖ਼ͷఆD Λͱͬͯɺߦྻ9͕ू߹ɹɹɹɹɹɹɹʹରͯ͠ఆɹͰڧತੑΛ࣋ͭͱ͢Δɻ ͜ͷͱ͖ɺҙͷਖ਼ͷLʹରͯ͠ Ͱ͋Εɺਖ਼ଇԽύϥϝʔλ͕ɹɹɹɹɹɹɹɹͷ-BTTPճؼʹΑͬͯಘΒΕΔ ਪఆྔҎԼͷධՁΛຬͨ͠·͢ɻ C(8
n/(c log d)) κ n ≥ ck log(d) λn ≥ 2||XTϵ|| ∞ /n || ̂ w − w*||2 2 ≤ 9kλn κ2 ͜ͷධՁͩͱ͋·Γخ͕͠͞Θ͔Βͳ͍ɻ
ศརͳෆࣜ ิɿ<3BTLVUUJ8BJOXSJHIU:V 1SPQPTJUJPO> αΠζɹɹͷߦྻ9ͷ֤ߦ͕ಠཱʹଟมྔਖ਼ن/ Є ʹैͬͯಘΒΕΔͱ͖ ਖ਼ͷఆD D`͕ଘࡏͯ͠ɺҙͷE࣍ݩϕΫτϧWʹରͯ͠গͳ͘ͱ֬
ͰҎԼͷධՁ͕Γཱͪ·͢ɻͨͩ͠ɺ4ೖྗมͷඪ४ภࠩͷ࠷େͰ͢ɻ n × d 1 − c exp(−c′n) ||Xv|| 2 n ≥ 1 4 ||Σ1/2v|| 2 − 9S log(d) n ||v|| 1
ఆཧͷূ໌ 3BTLVUUJ8BJOXSJHIU:Vͷෆ͔ࣜΒ ΛಘΔɻͦ͜ͰɺɹɹɹɹɹɹɹɹͳͷͰɺఆDΛेେ͖͘ͱΕΕ ੍ݶڧತੑ͕গͳ͘ͱ֬ɹɹɹɹɹɹɹͰΓཱͭ͜ͱ͕Θ͔Γ·͢ɻ ͜͜ͰɺࠓͱͬͨఆD͕ɹɹɹɹɹɹΈͨ͢ͱԾఆͯ͠ɺ /FHBICBO3BWJLVNBS8BJOXSJHIU:VͷఆཧΛߟ͑·͢ɻਖ਼ଇԽύϥϝʔλͷ ͔݅Βɺগͳ͘ͱ֬ Ͱਪఆྔʹؔ͢ΔఆཧͷධՁΛಘΔɻҎ্ͰఆཧΛূ໌Ͱ͖ͨɻ ||Xv|| 2
n ≥ 1 4 ( 1 − 36 log(d) n ||v|| 1 ||v|| 2 ) v ∈ C(8 n/(c log d)) 1 − c exp(−c′n) n ≥ ck log(d) P [ ||XTϵ|| ∞ ≤ 8σ2n log(d)] ≥ 1 − 1 d − exp (− n 2 )
ࢀߟจݙ <>3BTLVUUJ8BJOXSJHIU:V .JOJNBYSBUFTPGFTUJNBUJPOGPSIJHI EJNFOTJPOBMMJOFBSSFHSFTTJPOPWFSMRCBMMT *&&&5SBOTBDUJPO PO*OGPSNBUJPO5IFPSZ <>/FHBICBO3BWJLVNBS8BJOXSJHIU:V "6OJpFE'SBNFXPSLGPS )JHI%JNFOTJPOBM"OBMZTJTPG.&TUJNBUPSTXJUI%FDPNQPTBCMF
3FHVMBSJ[FST 4UBUJTUJDBM4DJFODF 7PM /P <>Ԭ྄ଠ εύʔεੑʹجͮ͘ػցֶश ػցֶशϓϩϑΣογϣφϧ γϦʔζ ߨஊࣾ