Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Metalearning shared Hierarchy
Search
Wonseok Jung
August 28, 2018
Science
0
48
Metalearning shared Hierarchy
Metalearning shared Hierarchy
논문 review
Wonseok Jung
August 28, 2018
Tweet
Share
More Decks by Wonseok Jung
See All by Wonseok Jung
Ai for business -self car driving
wonseokjung
0
200
reinforcement_learning_.pdf
wonseokjung
2
1.5k
원석이의 모두연에서 강화학습 보석되기
wonseokjung
0
420
NeuralIPS
wonseokjung
0
420
Introduction Deep Reinforcement Learning
wonseokjung
0
160
Deep reinforcemenet learning -2
wonseokjung
0
200
Deep Reinforcement Learning - Introduction
wonseokjung
1
640
How to become a datascientist ?
wonseokjung
2
2.3k
Review of Taylor series
wonseokjung
1
120
Other Decks in Science
See All in Science
深層学習を用いた根菜類の個数カウントによる収量推定法の開発
kentaitakura
0
200
サイゼミ用因果推論
lw
1
7.6k
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
410
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
200
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
430
風の力で振れ幅が大きくなる振り子!? 〜タコマナローズ橋はなぜ落ちたのか〜
syotasasaki593876
1
130
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
210
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
300
Masseyのレーティングを用いたフォーミュラレースドライバーの実績評価手法の開発 / Development of a Performance Evaluation Method for Formula Race Drivers Using Massey Ratings
konakalab
0
210
Lean4による汎化誤差評価の形式化
milano0017
1
360
Quelles valorisations des logiciels vers le monde socio-économique dans un contexte de Science Ouverte ?
bluehats
1
560
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
870
Featured
See All Featured
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
The Language of Interfaces
destraynor
162
25k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Building Adaptive Systems
keathley
44
2.8k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.3k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Building Applications with DynamoDB
mza
96
6.7k
Transcript
.FUB-FBOJOHTIBSFE)JFSBSDIZ 8POTFPL+VOH 3FJOGPSDFNFOU-FBSOJOH
ਗࢳ 8POTFPL+VOH $JUZ6OJWFSTJUZPG/FX:PSL#BSVDI$PMMFHF %BUB4DJFODF.BKPS $POOFYJPO"*"*3FTFBSDIFS %FFQ-FBSOJOH$PMMFHF3FJOGPSDFNFOU-FBSOJOH3FTFBSDIFS .PEVMBCT$53--FBEFS 3FJOGPSDFNFOU-FBSOJOH 0CKFDU%FUFDUJPO
$IBUCPU (JUIVC IUUQTHJUIVCDPNXPOTFPLKVOH 'BDFCPPL IUUQTXXXGBDFCPPLDPNXTKVOH #MPH IUUQTXPOTFPLKVOHHJUIVCJP
ݾର 1. Introduction 2. Problem Statement 3. Algorithm 4. Experiments
META LEARNING SHARED HIERARCHIES
1.INTRODUCTION
1. UTILIZE PRIOR KNOWLEDGE META LEARNING SHARED HIERARCHIES 6UJMJ[FQSJPSLOPXMFEHF .BTUFSOFXUBTL
1.1 BUT REINFORCEMENT… META LEARNING SHARED HIERARCHIES How about Reinforcement
Learning?
1.2 SOLVE EACH TASK INDEPENDENTLY AND FROM SCRATCH SUPERMARIO WITH
R.L https://www.youtube.com/watch?v=IjvbhwuCaF0
1.3 ISSUES META LEARNING SHARED HIERARCHIES Sharing information Task1 Task2
Task3 θ1 θ2 θ3
1.4 MASTER POLICY META LEARNING SHARED HIERARCHIES Master Policy Sub1
Sub2 Sub3 θ1 θ2 θ3
1.5 MLSH META LEARNING SHARED HIERARCHIES Metalearning shared hierarchies
2.PROBLEM STATEMENT
2.1 NOTATION Time step Action Transition Function Reward Set of
states Set of actions Start state Discount factor t a P(s′, r ∣ s, a) r A S S0 γ Set of reward Policy Reward State R π r REINFORCEMENT LEARNING s
2.2 NOTATION META LEARNING SHARED HIERARCHIES EJTUSJCVUJPOPWFS.%1T "HFOUחQBSBNFUFSWFDUPSܳӝਵ۽VQEBUFೠ పझٜՙܻҕਬೞחۄఠ
пపझۄఠ BHFOUоഅపझ.ਸߓݴসؘೞחۄఠ PM πθ,ϕ(a∣s) ϕ θ
"DUJPO "HFOU &OWJSPONFOU 3FXBSE At Rt 4UBUF St Rt+1 St+1
REINFORCEMENT LEARNING 2.3 OBJECTIVE MDP
REINFORCEMENT LEARNING 2.4 NEW MDP &OWJSPONFOU 3FXBSE At Rt St
Rt+1 St+1 5BQUIFCBMM 1PTJUJWF3FXBSE New MDP
SUPERMARIO WITH R.L 2.5 NEW MDP-2 "DUJPO "HFOU &OWJSPONFOU 3FXBSE
At Rt 4UBUF St Rt+1 St+1 3FXBSE 1FOBMUZ Another New MDP
2.6 FIND SHARING PARAMETER META LEARNING SHARED HIERARCHIES maximizeϕ EM∼PM
, t = 0...T − 1[R]
2.7 STRUCTURE META LEARNING SHARED HIERARCHIES
3.ALGORITHM
3.1 MLSH ALGORITHM META LEARNING SHARED HIERARCHIES
3.2 MLSH ALGORITHM META LEARNING SHARED HIERARCHIES Two main components
3.3 MLSH ALGORITHM META LEARNING SHARED HIERARCHIES Joint update period
Warmup period
3.4 MLSH ALGORITHM META LEARNING SHARED HIERARCHIES Joint update period
Warmup period
3.5 MLSH ALGORITHM META LEARNING SHARED HIERARCHIES Joint update period
Warmup period θ θ, ϕ update
3.6 MLSH ALGORITHM-2 META LEARNING SHARED HIERARCHIES Joint update period
Warmup period θ θ, ϕ update
3.7 MLSH ALGORITHM-WARMUP META LEARNING SHARED HIERARCHIES update
3.8 MLSH ALGORITHM- JOINT UPDATE PERIOD META LEARNING SHARED HIERARCHIES
update
3.8 MLSH ALGORITHM META LEARNING SHARED HIERARCHIES update
4. EXPERIMENTS
4.1 2D MOVING BANDITS TASK META LEARNING SHARED HIERARCHIES
4.2 RESULT(2D BALL) META LEARNING SHARED HIERARCHIES
4.3 WALKING, CRAWLING META LEARNING SHARED HIERARCHIES
4.4 WALKING, CRAWLING META LEARNING SHARED HIERARCHIES