Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Metalearning shared Hierarchy
Search
Wonseok Jung
August 28, 2018
Science
0
50
Metalearning shared Hierarchy
Metalearning shared Hierarchy
논문 review
Wonseok Jung
August 28, 2018
Tweet
Share
More Decks by Wonseok Jung
See All by Wonseok Jung
Ai for business -self car driving
wonseokjung
0
200
reinforcement_learning_.pdf
wonseokjung
2
1.5k
원석이의 모두연에서 강화학습 보석되기
wonseokjung
0
430
NeuralIPS
wonseokjung
0
430
Introduction Deep Reinforcement Learning
wonseokjung
0
170
Deep reinforcemenet learning -2
wonseokjung
0
200
Deep Reinforcement Learning - Introduction
wonseokjung
1
650
How to become a datascientist ?
wonseokjung
2
2.3k
Review of Taylor series
wonseokjung
1
120
Other Decks in Science
See All in Science
俺たちは本当に分かり合えるのか? ~ PdMとスクラムチームの “ずれ” を科学する
bonotake
2
1.1k
Celebrate UTIG: Staff and Student Awards 2025
utig
0
430
Performance Evaluation and Ranking of Drivers in Multiple Motorsports Using Massey’s Method
konakalab
0
130
データベース03: 関係データモデル
trycycle
PRO
1
330
デジタルアーカイブの教育利用促進を目指したメタデータLOD基盤に関する研究 / Research on a Metadata LOD Platform for Promoting Educational Uses of Digital Archives
masao
0
140
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
440
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
260
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
870
データマイニング - ウェブとグラフ
trycycle
PRO
0
230
風の力で振れ幅が大きくなる振り子!? 〜タコマナローズ橋はなぜ落ちたのか〜
syotasasaki593876
1
190
良書紹介04_生命科学の実験デザイン
bunnchinn3
0
110
Optimization of the Tournament Format for the Nationwide High School Kyudo Competition in Japan
konakalab
0
140
Featured
See All Featured
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
75
Discover your Explorer Soul
emna__ayadi
2
1k
Effective software design: The role of men in debugging patriarchy in IT @ Voxxed Days AMS
baasie
0
200
Design in an AI World
tapps
0
120
How to make the Groovebox
asonas
2
1.9k
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
Darren the Foodie - Storyboard
khoart
PRO
2
2.1k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
New Earth Scene 8
popppiees
1
1.4k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1.1k
Six Lessons from altMBA
skipperchong
29
4.1k
Transcript
.FUB-FBOJOHTIBSFE)JFSBSDIZ 8POTFPL+VOH 3FJOGPSDFNFOU-FBSOJOH
ਗࢳ 8POTFPL+VOH $JUZ6OJWFSTJUZPG/FX:PSL#BSVDI$PMMFHF %BUB4DJFODF.BKPS $POOFYJPO"*"*3FTFBSDIFS %FFQ-FBSOJOH$PMMFHF3FJOGPSDFNFOU-FBSOJOH3FTFBSDIFS .PEVMBCT$53--FBEFS 3FJOGPSDFNFOU-FBSOJOH 0CKFDU%FUFDUJPO
$IBUCPU (JUIVC IUUQTHJUIVCDPNXPOTFPLKVOH 'BDFCPPL IUUQTXXXGBDFCPPLDPNXTKVOH #MPH IUUQTXPOTFPLKVOHHJUIVCJP
ݾର 1. Introduction 2. Problem Statement 3. Algorithm 4. Experiments
META LEARNING SHARED HIERARCHIES
1.INTRODUCTION
1. UTILIZE PRIOR KNOWLEDGE META LEARNING SHARED HIERARCHIES 6UJMJ[FQSJPSLOPXMFEHF .BTUFSOFXUBTL
1.1 BUT REINFORCEMENT… META LEARNING SHARED HIERARCHIES How about Reinforcement
Learning?
1.2 SOLVE EACH TASK INDEPENDENTLY AND FROM SCRATCH SUPERMARIO WITH
R.L https://www.youtube.com/watch?v=IjvbhwuCaF0
1.3 ISSUES META LEARNING SHARED HIERARCHIES Sharing information Task1 Task2
Task3 θ1 θ2 θ3
1.4 MASTER POLICY META LEARNING SHARED HIERARCHIES Master Policy Sub1
Sub2 Sub3 θ1 θ2 θ3
1.5 MLSH META LEARNING SHARED HIERARCHIES Metalearning shared hierarchies
2.PROBLEM STATEMENT
2.1 NOTATION Time step Action Transition Function Reward Set of
states Set of actions Start state Discount factor t a P(s′, r ∣ s, a) r A S S0 γ Set of reward Policy Reward State R π r REINFORCEMENT LEARNING s
2.2 NOTATION META LEARNING SHARED HIERARCHIES EJTUSJCVUJPOPWFS.%1T "HFOUחQBSBNFUFSWFDUPSܳӝਵ۽VQEBUFೠ పझٜՙܻҕਬೞחۄఠ
пపझۄఠ BHFOUоഅపझ.ਸߓݴসؘೞחۄఠ PM πθ,ϕ(a∣s) ϕ θ
"DUJPO "HFOU &OWJSPONFOU 3FXBSE At Rt 4UBUF St Rt+1 St+1
REINFORCEMENT LEARNING 2.3 OBJECTIVE MDP
REINFORCEMENT LEARNING 2.4 NEW MDP &OWJSPONFOU 3FXBSE At Rt St
Rt+1 St+1 5BQUIFCBMM 1PTJUJWF3FXBSE New MDP
SUPERMARIO WITH R.L 2.5 NEW MDP-2 "DUJPO "HFOU &OWJSPONFOU 3FXBSE
At Rt 4UBUF St Rt+1 St+1 3FXBSE 1FOBMUZ Another New MDP
2.6 FIND SHARING PARAMETER META LEARNING SHARED HIERARCHIES maximizeϕ EM∼PM
, t = 0...T − 1[R]
2.7 STRUCTURE META LEARNING SHARED HIERARCHIES
3.ALGORITHM
3.1 MLSH ALGORITHM META LEARNING SHARED HIERARCHIES
3.2 MLSH ALGORITHM META LEARNING SHARED HIERARCHIES Two main components
3.3 MLSH ALGORITHM META LEARNING SHARED HIERARCHIES Joint update period
Warmup period
3.4 MLSH ALGORITHM META LEARNING SHARED HIERARCHIES Joint update period
Warmup period
3.5 MLSH ALGORITHM META LEARNING SHARED HIERARCHIES Joint update period
Warmup period θ θ, ϕ update
3.6 MLSH ALGORITHM-2 META LEARNING SHARED HIERARCHIES Joint update period
Warmup period θ θ, ϕ update
3.7 MLSH ALGORITHM-WARMUP META LEARNING SHARED HIERARCHIES update
3.8 MLSH ALGORITHM- JOINT UPDATE PERIOD META LEARNING SHARED HIERARCHIES
update
3.8 MLSH ALGORITHM META LEARNING SHARED HIERARCHIES update
4. EXPERIMENTS
4.1 2D MOVING BANDITS TASK META LEARNING SHARED HIERARCHIES
4.2 RESULT(2D BALL) META LEARNING SHARED HIERARCHIES
4.3 WALKING, CRAWLING META LEARNING SHARED HIERARCHIES
4.4 WALKING, CRAWLING META LEARNING SHARED HIERARCHIES