Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Metalearning shared Hierarchy
Search
Wonseok Jung
August 28, 2018
Science
0
51
Metalearning shared Hierarchy
Metalearning shared Hierarchy
논문 review
Wonseok Jung
August 28, 2018
Tweet
Share
More Decks by Wonseok Jung
See All by Wonseok Jung
Ai for business -self car driving
wonseokjung
0
210
reinforcement_learning_.pdf
wonseokjung
2
1.5k
원석이의 모두연에서 강화학습 보석되기
wonseokjung
0
430
NeuralIPS
wonseokjung
0
430
Introduction Deep Reinforcement Learning
wonseokjung
0
170
Deep reinforcemenet learning -2
wonseokjung
0
210
Deep Reinforcement Learning - Introduction
wonseokjung
1
650
How to become a datascientist ?
wonseokjung
2
2.3k
Review of Taylor series
wonseokjung
1
120
Other Decks in Science
See All in Science
コミュニティサイエンスの実践@日本認知科学会2025
hayataka88
0
120
MCMCのR-hatは分散分析である
moricup
0
590
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
940
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
470
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
880
DMMにおけるABテスト検証設計の工夫
xc6da
1
1.5k
凸最適化からDC最適化まで
santana_hammer
1
350
会社でMLモデルを作るとは @電気通信大学 データアントレプレナーフェロープログラム
yuto16
1
530
Navigating Weather and Climate Data
rabernat
0
110
Performance Evaluation and Ranking of Drivers in Multiple Motorsports Using Massey’s Method
konakalab
0
140
データマイニング - ウェブとグラフ
trycycle
PRO
0
240
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
340
Featured
See All Featured
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
1
330
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.6k
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.9k
AI Search: Where Are We & What Can We Do About It?
aleyda
0
7k
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
93
Optimising Largest Contentful Paint
csswizardry
37
3.6k
The Mindset for Success: Future Career Progression
greggifford
PRO
0
240
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
67
Why Our Code Smells
bkeepers
PRO
340
58k
Leo the Paperboy
mayatellez
4
1.4k
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
56
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3.1k
Transcript
.FUB-FBOJOHTIBSFE)JFSBSDIZ 8POTFPL+VOH 3FJOGPSDFNFOU-FBSOJOH
ਗࢳ 8POTFPL+VOH $JUZ6OJWFSTJUZPG/FX:PSL#BSVDI$PMMFHF %BUB4DJFODF.BKPS $POOFYJPO"*"*3FTFBSDIFS %FFQ-FBSOJOH$PMMFHF3FJOGPSDFNFOU-FBSOJOH3FTFBSDIFS .PEVMBCT$53--FBEFS 3FJOGPSDFNFOU-FBSOJOH 0CKFDU%FUFDUJPO
$IBUCPU (JUIVC IUUQTHJUIVCDPNXPOTFPLKVOH 'BDFCPPL IUUQTXXXGBDFCPPLDPNXTKVOH #MPH IUUQTXPOTFPLKVOHHJUIVCJP
ݾର 1. Introduction 2. Problem Statement 3. Algorithm 4. Experiments
META LEARNING SHARED HIERARCHIES
1.INTRODUCTION
1. UTILIZE PRIOR KNOWLEDGE META LEARNING SHARED HIERARCHIES 6UJMJ[FQSJPSLOPXMFEHF .BTUFSOFXUBTL
1.1 BUT REINFORCEMENT… META LEARNING SHARED HIERARCHIES How about Reinforcement
Learning?
1.2 SOLVE EACH TASK INDEPENDENTLY AND FROM SCRATCH SUPERMARIO WITH
R.L https://www.youtube.com/watch?v=IjvbhwuCaF0
1.3 ISSUES META LEARNING SHARED HIERARCHIES Sharing information Task1 Task2
Task3 θ1 θ2 θ3
1.4 MASTER POLICY META LEARNING SHARED HIERARCHIES Master Policy Sub1
Sub2 Sub3 θ1 θ2 θ3
1.5 MLSH META LEARNING SHARED HIERARCHIES Metalearning shared hierarchies
2.PROBLEM STATEMENT
2.1 NOTATION Time step Action Transition Function Reward Set of
states Set of actions Start state Discount factor t a P(s′, r ∣ s, a) r A S S0 γ Set of reward Policy Reward State R π r REINFORCEMENT LEARNING s
2.2 NOTATION META LEARNING SHARED HIERARCHIES EJTUSJCVUJPOPWFS.%1T "HFOUחQBSBNFUFSWFDUPSܳӝਵ۽VQEBUFೠ పझٜՙܻҕਬೞחۄఠ
пపझۄఠ BHFOUоഅపझ.ਸߓݴসؘೞחۄఠ PM πθ,ϕ(a∣s) ϕ θ
"DUJPO "HFOU &OWJSPONFOU 3FXBSE At Rt 4UBUF St Rt+1 St+1
REINFORCEMENT LEARNING 2.3 OBJECTIVE MDP
REINFORCEMENT LEARNING 2.4 NEW MDP &OWJSPONFOU 3FXBSE At Rt St
Rt+1 St+1 5BQUIFCBMM 1PTJUJWF3FXBSE New MDP
SUPERMARIO WITH R.L 2.5 NEW MDP-2 "DUJPO "HFOU &OWJSPONFOU 3FXBSE
At Rt 4UBUF St Rt+1 St+1 3FXBSE 1FOBMUZ Another New MDP
2.6 FIND SHARING PARAMETER META LEARNING SHARED HIERARCHIES maximizeϕ EM∼PM
, t = 0...T − 1[R]
2.7 STRUCTURE META LEARNING SHARED HIERARCHIES
3.ALGORITHM
3.1 MLSH ALGORITHM META LEARNING SHARED HIERARCHIES
3.2 MLSH ALGORITHM META LEARNING SHARED HIERARCHIES Two main components
3.3 MLSH ALGORITHM META LEARNING SHARED HIERARCHIES Joint update period
Warmup period
3.4 MLSH ALGORITHM META LEARNING SHARED HIERARCHIES Joint update period
Warmup period
3.5 MLSH ALGORITHM META LEARNING SHARED HIERARCHIES Joint update period
Warmup period θ θ, ϕ update
3.6 MLSH ALGORITHM-2 META LEARNING SHARED HIERARCHIES Joint update period
Warmup period θ θ, ϕ update
3.7 MLSH ALGORITHM-WARMUP META LEARNING SHARED HIERARCHIES update
3.8 MLSH ALGORITHM- JOINT UPDATE PERIOD META LEARNING SHARED HIERARCHIES
update
3.8 MLSH ALGORITHM META LEARNING SHARED HIERARCHIES update
4. EXPERIMENTS
4.1 2D MOVING BANDITS TASK META LEARNING SHARED HIERARCHIES
4.2 RESULT(2D BALL) META LEARNING SHARED HIERARCHIES
4.3 WALKING, CRAWLING META LEARNING SHARED HIERARCHIES
4.4 WALKING, CRAWLING META LEARNING SHARED HIERARCHIES