Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Knowns and unknowns
Search
Xyggy
February 21, 2019
Technology
0
420
Knowns and unknowns
Xyggy
February 21, 2019
Tweet
Share
More Decks by Xyggy
See All by Xyggy
Add and remove images from query
xyggy
0
950
More like this or these
xyggy
0
920
More of these, less of the others
xyggy
0
900
Taking photos is free
xyggy
0
470
Realtime AI is Not a Myth
xyggy
0
1.7k
Litmus test
xyggy
0
850
3 minute Thingy
xyggy
0
140
pop-your-filter-bubble.pdf
xyggy
0
280
Other Decks in Technology
See All in Technology
Function calling機能をPLaMo2に実装するには / PFN LLMセミナー
pfn
PRO
0
910
業務自動化プラットフォーム Google Agentspace に入門してみる #devio2025
maroon1st
0
190
Goに育てられ開発者向けセキュリティ事業を立ち上げた僕が今向き合う、AI × セキュリティの最前線 / Go Conference 2025
flatt_security
0
350
実装で解き明かす並行処理の歴史
zozotech
PRO
1
320
ユニットテストに対する考え方の変遷 / Everyone should watch his live coding
mdstoy
0
120
AI駆動開発を推進するためにサービス開発チームで 取り組んでいること
noayaoshiro
0
160
AWSにおけるTrend Vision Oneの効果について
shimak
0
120
FastAPIの魔法をgRPC/Connect RPCへ
monotaro
PRO
1
730
Optuna DashboardにおけるPLaMo2連携機能の紹介 / PFN LLM セミナー
pfn
PRO
1
870
ACA でMAGI システムを社内で展開しようとした話
mappie_kochi
1
250
GopherCon Tour 概略
logica0419
2
190
Modern_Data_Stack最新動向クイズ_買収_AI_激動の2025年_.pdf
sagara
0
200
Featured
See All Featured
Faster Mobile Websites
deanohume
310
31k
Build your cross-platform service in a week with App Engine
jlugia
232
18k
Making the Leap to Tech Lead
cromwellryan
135
9.5k
A Tale of Four Properties
chriscoyier
160
23k
How to Think Like a Performance Engineer
csswizardry
27
2k
Context Engineering - Making Every Token Count
addyosmani
5
180
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
19
1.2k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
GraphQLとの向き合い方2022年版
quramy
49
14k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Transcript
1 Knowns and unknowns Query images Result images Dataset: wikiart
images - https://www.wikiart.org/. No image pre-processing performed. No textual data used. Feature vectors generated automatically with deep learning. www.xyggy.com © 2019
2 Known image An image is defined as known if
it has been added to Thingy with a unique id. In conventional machine learning, this image would be part of the “seen” data employed for building trained models. www.xyggy.com © 2019
3 Unknown image An image is defined as unknown if
it has not been added to Thingy. In conventional machine learning, this image would be “unseen” data for obtaining a prediction of. www.xyggy.com © 2019
4 Known and unknown images A query can contain both
known and unknown images. A data item is represented by a feature vector and is either known or unknown to Thingy but both can be used in a query. www.xyggy.com © 2019
5 Thingy www.xyggy.com © 2019