Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
RustとPyTorchで作る推論サーバー
Search
Yudai Hayashi
November 19, 2024
6
2.1k
RustとPyTorchで作る推論サーバー
UV Study : Rust LT会で発表した内容になります
https://uniquevision.connpass.com/event/335781/
Yudai Hayashi
November 19, 2024
Tweet
Share
More Decks by Yudai Hayashi
See All by Yudai Hayashi
BigQueryで作る簡単なFeature Store
yudai00
2
220
プロダクトのコードをPandasからPolarsへ書き換えた話
yudai00
8
2.4k
データサイエンティストになって得た学び
yudai00
1
120
社内での継続的な機械学習勉強会の開催のコツ
yudai00
2
640
会社訪問アプリ「Wantedly Visit」における新規ユーザーの行動量に基づいた推薦方策の選択
yudai00
0
1.4k
Polarsを活用した機械学習ジョブの高速化
yudai00
1
200
Voyagerを利用した宿画像の最近傍探索による候補生成
yudai00
1
190
推薦データ分析コンペに参加して得た知見
yudai00
2
400
論文紹介:Unbiased Delayed Feedback Label Correction for Conversion Rate Prediction
yudai00
0
300
Featured
See All Featured
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
31
2.7k
Happy Clients
brianwarren
98
6.7k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
28
2k
How STYLIGHT went responsive
nonsquared
95
5.2k
Thoughts on Productivity
jonyablonski
67
4.3k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
42
9.2k
Done Done
chrislema
181
16k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
25
1.8k
GraphQLとの向き合い方2022年版
quramy
43
13k
The Art of Programming - Codeland 2020
erikaheidi
52
13k
Transcript
© 2024 Wantedly, Inc. RustとPyTorchで作る推論サーバー UV Study: Rust LT会 Nov.
19 2024 - Yudai Hayashi
© 2024 Wantedly, Inc. INTERNAL ONLY 自己紹介 林 悠大 • 経歴:
◦ 東京大学工学系研究科でPh.D取得 ◦ 2022年にウォンテッドリーにデータ サイエンティストとして新卒入社。 推薦システムの開発を行う • X: @python_walker • Rust初心者
© 2024 Wantedly, Inc. INTERNAL ONLY なぜデータサイエンティストがRustの話をする?
© 2024 Wantedly, Inc. INTERNAL ONLY PythonコミュニティーにとってのRust 色々なRustで書かれたライブラリやツールが広くPythonで使われるようになってきている https://github.com/pola-rs/polars https://docs.astral.sh/uv/
https://docs.astral.sh/ruff/ • Polars ◦ 構造化データを扱うためのライブラリ • Ruff ◦ linter & code formatter • uv ◦ パッケージマネージャー Rustで書かれた高機能かつ高速なツール がどんどん登場している
© 2024 Wantedly, Inc. INTERNAL ONLY RustとPythonの親和性 RustとPythonは親和性が高い(と自分は思っている) PyO3を使ってpythonでも使える ようなバインディングを生成、
matrurinを使ってbuild→pypiにパ ブリッシュ… みたいなことが簡単にできる RustとPythonを使って機械学習モデルのサービングはどれくらい簡単にできるのだろう?
© 2024 Wantedly, Inc. INTERNAL ONLY 作ったもの Request Response Data
Model file Train Model Serve Model モデルの学習はPython側で行い、モデルを使った推論をRustで行う構成
© 2024 Wantedly, Inc. INTERNAL ONLY 使うライブラリ コードはREADMEから抜粋 • tch-rsを使ってRust側からPyTorchのモデルを利用
• PythonのPyTorchを似たような使用感 • libtorchを入れてパスを通せば使えるようになる ◦ 自分はDockerコンテナ内で “system-wide libtorch” を入れて動かして いたが、Python側で入れたPytorchを利用することもできるらしい
© 2024 Wantedly, Inc. INTERNAL ONLY モデルの学習とtch-rsでの利用 Python側 Rust側 学習したモデルはJITコ
ンパイル テンソルにしてモデルに入力
© 2024 Wantedly, Inc. INTERNAL ONLY モデルの学習とtch-rsでの利用 Python側 Rust側 学習したモデルはJIT
コンパイル 出力は後段で 扱いやすいよ うにベクトル などに変換
© 2024 Wantedly, Inc. INTERNAL ONLY 実験結果 実行環境 レスポンスタイム Rust
(actix-web) 1.75 ms Python (FastAPI) 2.87 ms curl -w “${time_total} ...” で実行時間を計測 Rustのサーバーの方が40 %高速! → 入力データの前処理の部分で差がついた と考えられる パフォーマンス 感じた課題 入力値の前処理では、ちゃんとした変換処 理を書くにはPython側からパラメーター を伝搬させる方法を考える必要がありそう
© 2024 Wantedly, Inc. INTERNAL ONLY まとめ GitHub https://github.com/Hayashi-Yudai/rust-inference-server •
RustでPyTorchのモデルをロードして推論する方法を紹介 • Rustで推論からレスポンスまで返すことで、Pythonで書いた 時よりも40 %の性能改善を実現できる • モデルに入力する前のデータの処理は、現状Rust側では実装 コストが高い部分もありそう