Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ユーザーのプロフィールデータを活用した推薦精度向上の取り組み
Search
Yudai Hayashi
June 19, 2025
Technology
0
680
ユーザーのプロフィールデータを活用した推薦精度向上の取り組み
白金鉱業 Meetup Vol.19@六本木 で発表した内容です
Yudai Hayashi
June 19, 2025
Tweet
Share
More Decks by Yudai Hayashi
See All by Yudai Hayashi
Off-Policy Evaluation and Learning for Matching Markets
yudai00
0
89
ジョブマッチングプラットフォームにおける推薦アルゴリズムの活用事例
yudai00
0
100
MCP Clientを活用するための設計と実装上の工夫
yudai00
1
1.3k
人とシゴトのマッチングを実現するための機械学習技術
yudai00
1
81
MCPを理解する
yudai00
18
14k
データバリデーションによるFeature Storeデータ品質の担保
yudai00
1
240
「仮説行動」で学んだ、仮説を深め ていくための方法
yudai00
8
2k
相互推薦システムでのPseudo Label を活用したマッチ予測精度向上の取り組み
yudai00
1
1.1k
Wantedly Visitにおけるフリーワード検索時の推薦のオンライン化事例紹介
yudai00
1
330
Other Decks in Technology
See All in Technology
SREじゃなかった僕らがenablingを通じて「SRE実践者」になるまでのリアル / SRE Kaigi 2026
aeonpeople
6
2.6k
インフラエンジニア必見!Kubernetesを用いたクラウドネイティブ設計ポイント大全
daitak
1
390
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
2.1k
茨城の思い出を振り返る ~CDKのセキュリティを添えて~ / 20260201 Mitsutoshi Matsuo
shift_evolve
PRO
1
430
プレビュー版のDevOpsエージェントを現段階で触ってみた
ad_motsu
1
100
ブロックテーマ、WordPress でウェブサイトをつくるということ / 2026.02.07 Gifu WordPress Meetup
torounit
0
210
20260208_第66回 コンピュータビジョン勉強会
keiichiito1978
0
200
SREチームをどう作り、どう育てるか ― Findy横断SREのマネジメント
rvirus0817
0
360
Codex 5.3 と Opus 4.6 にコーポレートサイトを作らせてみた / Codex 5.3 vs Opus 4.6
ama_ch
0
220
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
240
StrandsとNeptuneを使ってナレッジグラフを構築する
yakumo
1
130
Why Organizations Fail: ノーベル経済学賞「国家はなぜ衰退するのか」から考えるアジャイル組織論
kawaguti
PRO
1
220
Featured
See All Featured
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
190
Highjacked: Video Game Concept Design
rkendrick25
PRO
1
290
The AI Search Optimization Roadmap by Aleyda Solis
aleyda
1
5.2k
Docker and Python
trallard
47
3.7k
How to Talk to Developers About Accessibility
jct
2
140
Reflections from 52 weeks, 52 projects
jeffersonlam
356
21k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
200
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
350
Code Review Best Practice
trishagee
74
20k
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
72
The untapped power of vector embeddings
frankvandijk
1
1.6k
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
740
Transcript
© 2025 Wantedly, Inc. ユーザーのプロフィールデータを活 用した推薦精度向上の取り組み 白金鉱業 Meetup Vol.19@六本木 Jun.19
2025 - Yudai Hayashi
© 2025 Wantedly, Inc. 自己紹介 林 悠大 • 経歴: ◦
2022年に応用物理分野で Ph.D取得 ◦ 2022年にウォンテッドリー株式会社に新卒入社。データサイ エンティストとして推薦システムの開発に従事 @python_walker @Hayashi-Yudai
© 2025 Wantedly, Inc. 今日話すこと:プロフィールデータを上手く活用してマッチング精度向上を実現した取り組み • ウォンテッドリーでは、採用担当者が魅力的なユーザーを見つけるのを手助けするために 推薦システ ムを活用している •
埋め込みモデルを高度化することで、採用担当者が興味を持つユーザーをより多く抽出できるように した話 大量のユーザー・ 企業 ランキング 並べ替え対象の 抽出 並べ替え 2ステージ推薦 ここの改善の話をします
© 2025 Wantedly, Inc. 背景:採用担当者が過去にスカウトを送ったユーザーと似ているユーザーには興味を持つはず ユーザーの「似ている」をプロフィールを使って定量化 ? ? Aさん プロフィール
Aさんのプロフィールと似てるから スカウト送られそう Aさんのプロフィールと似てないから スカウト送られなさそう ユーザープロフィールの類似度によって並び替え候補の抽出を実現
© 2025 Wantedly, Inc. 課題:プロフィール情報の文脈まで活用できていなかった ? ? Aさん プロフィール Embedding
w2v モデル コサイン類似度 word2vecベースの手法を利用していたため、プロフィールの文脈までは 活用できていなかった
© 2025 Wantedly, Inc. 解決策:より高度な埋め込みモデルの利用 • multilingual-e5-small という埋め込みモデルを利 用するように変更 ◦
文脈情報を埋め込みに反映 ◦ 日本語を含む多言語の文章に対応 ◦ トークン長は512 • ウォンテッドリーのプロフィールは文章量が多いケース が多い ◦ 各パートを分割して、それぞれで Embeddingを 計算し、平均を利用 Attentionベースの手法を利用することで、より ”似 ている”の解像度を上げられることを期待
© 2025 Wantedly, Inc. 解決策:なぜmultilingual-e5-smallか • よりトークン長の長いモデル (RoSEtta-base-ja; 1,024トークン)も試したが、E5系の方がRecallが高 かった
◦ プロフィールを分割して Embedding化したことで、短いトークン長でも十分だった可能性 ◦ 扱えるトークン長が長くなる点よりも、モデル自体の我々のタスクにおける性能差で E5の方が勝って いた可能性 • E5系の中でもモデルサイズごとの比較をしたが、 multilingual-e5-small のRecall性能が最も良かっ た ◦ JMTEBでは、STS (=Semantic Text Similarity) において large < base < small という性能に なっているので、これと整合性のある結果 https://github.com/sbintuitions/JMTEB /blob/main/leaderboard.md#sts 一言で言うと「色々試した中でこれが一番良かったから」 もう少し考察すると...
© 2025 Wantedly, Inc. 結果:定性的に文脈的に似ているユーザーを抽出できるようになった Input “データを解析することによってユーザーが求めていることを発見し、より良い体験を届けられるようなデータエ ンジニアになりたい” • データを駆使
してマーケティングを革新したい。データ分析から得られるインサイトを基に、 Web広告やチ ラシなど... • エンジニア として働きたい。アプリ開発をしたい 変更前 変更後 (E5) • データサイエンティストや機械学習エンジニア など、ユーザーにもっと近い立場 に立って仕事したい。 • ログなどのデータを使用 して、ユーザーにとって最適解 を見つけること。
© 2025 Wantedly, Inc. 結果:ランキング性能やプロダクト KPIにも良い方向の変化 大量のユーザー・ 企業 ランキング 並べ替え対象の
抽出 並べ替え Recallの改善 NDCGの改善 オフライン性能に加えて、オンラインテストでの主要 KPIの改善も実現 主要KPIの改 善
© 2025 Wantedly, Inc. まとめ • 埋め込みモデルを改善することで、推薦精度を高めることができた取り組みについて紹介 • 並べ替え候補の抽出ロジックの改善を、後段のランキング性能や主要 KPIの改善まで伝播させることがで
きた ◦ プロフィールをパートごとに分割して平均することで、広い範囲の情報を Embeddingに含められる ようにした ◦ これまでより文脈的に似ているユーザーが抽出できていることを定性的に確認 ◦ オンラインテストにより主要 KPIが改善していることを確認