Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
「仮説行動」で学んだ、仮説を深め ていくための方法
Search
Yudai Hayashi
April 23, 2025
Business
8
1.9k
「仮説行動」で学んだ、仮説を深め ていくための方法
読書シェア会 Vol. 4で発表した内容になります
https://yumemi.connpass.com/event/349910/
Yudai Hayashi
April 23, 2025
Tweet
Share
More Decks by Yudai Hayashi
See All by Yudai Hayashi
ジョブマッチングプラットフォームにおける推薦アルゴリズムの活用事例
yudai00
0
38
ユーザーのプロフィールデータを活用した推薦精度向上の取り組み
yudai00
0
630
MCP Clientを活用するための設計と実装上の工夫
yudai00
1
1.1k
人とシゴトのマッチングを実現するための機械学習技術
yudai00
1
48
MCPを理解する
yudai00
17
12k
データバリデーションによるFeature Storeデータ品質の担保
yudai00
1
190
相互推薦システムでのPseudo Label を活用したマッチ予測精度向上の取り組み
yudai00
1
910
Wantedly Visitにおけるフリーワード検索時の推薦のオンライン化事例紹介
yudai00
1
290
RustとPyTorchで作る推論サーバー
yudai00
12
7.3k
Other Decks in Business
See All in Business
1on1で使えるクリーン・ランゲージのご紹介
kawanotron
0
140
Scrum Inc. Japan Company Introduction
scrumincjp
0
7k
中期経営計画・成長可能性資料
kuradashi
0
600
【エンジニア職】中途採用向け会社説明資料(テックファーム株式会社)
techfirm
0
5.7k
Sales Marker Culture Book(English)
salesmarker
PRO
2
6.5k
ユーザー数10万人規模のアプリで挑んだトップ画面のUI刷新
tochi86
0
310
【会社紹介資料】25年7月度
creativeinfinity
0
370
20251003-GENDA経営戦略チーム-Value-Upの全体像
geshi0820
0
870
No Company - Company Deck 2025
nocompany
1
680
株式会社デイトラ FACT BOOK 2025
daytra
0
380
Data Cloudで実現する、 Agentforce が飛び交う Next Generation Platform
marreta27
0
190
Vorsicht, Autopilot! Bewusste Produktführung im AI-Zeitalter
arnekittler
0
120
Featured
See All Featured
The Pragmatic Product Professional
lauravandoore
36
6.9k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
The World Runs on Bad Software
bkeepers
PRO
71
11k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
Music & Morning Musume
bryan
46
6.8k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Reflections from 52 weeks, 52 projects
jeffersonlam
352
21k
KATA
mclloyd
32
14k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Raft: Consensus for Rubyists
vanstee
139
7.1k
Visualization
eitanlees
148
16k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Transcript
© 2025 Wantedly, Inc. 「仮説行動」で学んだ、仮説を深め ていくための方法 読書シェア会 vol.4 Apr. 24
2025 - Yudai Hayashi
© 2025 Wantedly, Inc. 自己紹介 林 悠大 • 経歴: ◦
2022年に応用物理分野で Ph.D取得 ◦ 2022年にウォンテッドリー株式会社に新卒入社。データサイ エンティストとして推薦システムの開発に従事 @python_walker @Hayashi-Yudai
© 2025 Wantedly, Inc. 今回の発表で紹介する書籍 なぜこの本を選んだか [画像] Amazon • データサイエンティストとして
、課題解決のクオリティーを上げた かった • 同じ著者の「解像度を上げる」という書籍を読んだことがあり、学 びが多かった体験があったため
© 2025 Wantedly, Inc. 今回の発表で紹介する書籍 この本から得た学び [画像] Amazon • エビデンス
x 推論 = 仮説 • 仮説の具体化と抽象化によって仮説の構造化を行 う • 検証するときに探索的思考を行うことで学びを最 大化することができる • … エビデンスと推論を使って仮説を生み出し検証を回していく点 に絞って、学びと自分の取り組みについて紹介
© 2025 Wantedly, Inc. エビデンス x 推論 = 仮説 エビデンス
推論 × → 仮説 エビデンスと推論の両方の品質が、良い仮説を生むために重要 • エビデンスを集める能力と、そこから推論を行う能力のどちらか一方でもかけていると、よい仮 説は生み出せない • 仮説の品質は、成果の大きさに直結する
© 2025 Wantedly, Inc. エビデンス x 推論 = 仮説 FITフレームワークを使って仮説を深める
Fact (=エビデンス)に対して推論を働かせて Insight (= 仮説) を得て、それを受け て何を行うかを決める Fact Insight Try エビデンス 推論 仮説 検証
© 2025 Wantedly, Inc. エビデンス x 推論 = 仮説 FITフレームワークを使って仮説を深める
実際の施策で使っている仮説テーブル Notionに仮説テーブルとファクトテーブルを用意して仮 説検証を進めていく、ということを試してみた ここまでは検証前に 決める
© 2025 Wantedly, Inc. エビデンス x 推論 = 仮説 FITフレームワークを使って仮説を深める
実際の施策で使っている仮説テーブル 検証する価値を判断 するために記入 Notionに仮説テーブルとファクトテーブルを用意して仮 説検証を進めていく、ということを試してみた
© 2025 Wantedly, Inc. 試してみてわかったこと 難しい... (検証を通して課題解決にうまく近づけていない) • 解決したい課題に対する解像度が低い状態で、仮説出し・構造化を行っていたのが原因では? ◦
仮説の構造化のためにもっとエビデンスが必要だった ◦ 検証の優先度をつけるためにエビデンスが必要だった → エビデンスを軽視してしまったのがうまくいかなかった原因である可能性が高い • 単純に慣れていなかったのが原因では? → 経験を意識的に貯めることで、うまく検証のループを回していけるようになる可能性 初手で仮説の洗い出し・検証から始めた結果、発散的な調査にしかならなかった
© 2025 Wantedly, Inc. エビデンス x 推論 の経験値を増やすための工夫 日々の振り返りでも検証サイクルを回してみる •
自分が成長するために何が足りていない か、という課題に対して仮説検証ループを 回す • Factはその日に起きたこと (= Event) • Tryは次の日に試してみること 自分に対する仮説検証によって経験値を稼ぐ Slack
© 2025 Wantedly, Inc. Summary • 仮説行動を読んで学んだ、「エビデンス」と「推論」から仮説を生み出す方法について紹 介 • 施策の中で仮説検証のサイクル回してみた結果を紹介
◦ うまく進めていくためには、仮説の構造化とエビデンスの収集のバランスが重要 ◦ 施策以外にも、日々の振り返りなどを通して検証サイクルの回し方を学んでいく ことは可能