Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データバリデーションによるFeature Storeデータ品質の担保
Search
Yudai Hayashi
April 25, 2025
Technology
1
170
データバリデーションによるFeature Storeデータ品質の担保
めぐろLT #26 「データエンジニアリングよもやま」で発表した内容です
https://meguro-lt.connpass.com/event/347477/
Yudai Hayashi
April 25, 2025
Tweet
Share
More Decks by Yudai Hayashi
See All by Yudai Hayashi
ジョブマッチングプラットフォームにおける推薦アルゴリズムの活用事例
yudai00
0
23
ユーザーのプロフィールデータを活用した推薦精度向上の取り組み
yudai00
0
600
MCP Clientを活用するための設計と実装上の工夫
yudai00
1
1.1k
人とシゴトのマッチングを実現するための機械学習技術
yudai00
1
38
MCPを理解する
yudai00
16
11k
「仮説行動」で学んだ、仮説を深め ていくための方法
yudai00
8
1.9k
相互推薦システムでのPseudo Label を活用したマッチ予測精度向上の取り組み
yudai00
1
890
Wantedly Visitにおけるフリーワード検索時の推薦のオンライン化事例紹介
yudai00
1
280
RustとPyTorchで作る推論サーバー
yudai00
12
7.3k
Other Decks in Technology
See All in Technology
リモートワークで心掛けていること 〜AI活用編〜
naoki85
0
150
Oracle Exadata Database Service on Cloud@Customer X11M (ExaDB-C@C) サービス概要
oracle4engineer
PRO
2
6.3k
마라톤 끝의 단거리 스퍼트: 2025년의 AI
inureyes
PRO
1
750
生成AIによるデータサイエンスの変革
taka_aki
0
3k
2025新卒研修・HTML/CSS #弁護士ドットコム
bengo4com
3
13k
「AIと一緒にやる」が当たり前になるまでの奮闘記
kakehashi
PRO
3
150
風が吹けばWHOISが使えなくなる~なぜWHOIS・RDAPはサーバー証明書のメール認証に使えなくなったのか~
orangemorishita
15
5.8k
Google Cloud で学ぶデータエンジニアリング入門 2025年版 #GoogleCloudNext / 20250805
kazaneya
PRO
22
5.2k
九州の人に知ってもらいたいGISスポット / gis spot in kyushu 2025
sakaik
0
160
Amazon S3 Vectorsは大規模ベクトル検索を低コスト化するサーバーレスなベクトルデータベースだ #jawsugsaga / S3 Vectors As A Serverless Vector Database
quiver
1
510
事業特性から逆算したインフラ設計
upsider_tech
0
110
10年以上続くプロダクトで今取り組んでること、取り組もうとしていること
sansantech
PRO
2
110
Featured
See All Featured
Scaling GitHub
holman
461
140k
A Tale of Four Properties
chriscoyier
160
23k
Bash Introduction
62gerente
614
210k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Making Projects Easy
brettharned
117
6.3k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
283
13k
Designing for Performance
lara
610
69k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
Fireside Chat
paigeccino
38
3.6k
Transcript
© 2025 Wantedly, Inc. データバリデーションによるFeature Storeデータ品質の担保 めぐろLT #26 「データエンジニアリングよもやま」 Apr.
25 2025 - Yudai Hayashi
© 2025 Wantedly, Inc. 自己紹介 林 悠大 • 経歴: ◦
2022年に応用物理分野で Ph.D取得 ◦ 2022年にウォンテッドリー株式会社に新卒入社。データサイ エンティストとして推薦システムの開発に従事 @python_walker @Hayashi-Yudai
© 2025 Wantedly, Inc. 今日話すこと • 我々が管理している Feature Storeでのデータ品質担保の取り組みについて紹介 •
Table-to-Tableで特徴量を作成する際には、バリデーションが通っていないデータが最終テーブルに一 時的にでも存在しないことを担保することが重要
© 2025 Wantedly, Inc. 背景 - Feature Storeを自作して機械学習モデルに利用 • 各種特徴量を定期計算して
BigQueryに テーブルを作成する仕組み ◦ PythonFeature: Pythonを使っ て計算する特徴量 ◦ SQLFeature: SQLだけで計算す る特徴量 • 計算した特徴量は複数の機械学習シス テムで利用
© 2025 Wantedly, Inc. 課題 - 計算した特徴量が意図通りになっていなくても気づけない状態になっていた • 特徴量が「意図通りになっていない」とは? ◦
欠損するはずがないフィールドに欠損がある ◦ 全く同じデータが複数回出現する ◦ … • 意図通りになっていないと何がまずいか ◦ 人為的な特徴量のノイズにより、特徴量を学習に利用した機械学習モデルの性能が劣化する (garbage-in-garbage-out) 特徴量を作る際に十分なバリデーションをかけることが重要 ただし、SQLFeatureはBQ上で処理が完結するので、バリデーション方法を工夫する必要 がある
© 2025 Wantedly, Inc. 解決策 - 中間テーブルを作成してバリデーションを行う 要求:バリデーションを通っていないテーブルが存在しない • 中間テーブルを作成してからバリデーションをか
ける。通ったら最終テーブルにコピー • 特徴量の情報はYAMLで管理しており、そこから keyカラムを読み取る ◦ 特徴量計算するクエリを書くときはバリ デーションのことを考えなくてよい
© 2025 Wantedly, Inc. まとめ • 我々が管理している Feature Storeでのデータ品質担保の取り組みについて紹介 •
SQLだけで計算する特徴量においてバリデーションを行うために、一時テーブルを作成してバリデーション を行った後、最終テーブルにコピーするという方策を取った ◦ バリデーションを通っていないデータが最終テーブルに存在しないことを担保 ◦ バリデーションロジックを特徴量計算から切り離すことで、新しい特徴量を追加する時でも設定し忘 れるリスクを回避