Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データバリデーションによるFeature Storeデータ品質の担保
Search
Yudai Hayashi
April 25, 2025
Technology
1
240
データバリデーションによるFeature Storeデータ品質の担保
めぐろLT #26 「データエンジニアリングよもやま」で発表した内容です
https://meguro-lt.connpass.com/event/347477/
Yudai Hayashi
April 25, 2025
Tweet
Share
More Decks by Yudai Hayashi
See All by Yudai Hayashi
Off-Policy Evaluation and Learning for Matching Markets
yudai00
0
89
ジョブマッチングプラットフォームにおける推薦アルゴリズムの活用事例
yudai00
0
100
ユーザーのプロフィールデータを活用した推薦精度向上の取り組み
yudai00
0
680
MCP Clientを活用するための設計と実装上の工夫
yudai00
1
1.3k
人とシゴトのマッチングを実現するための機械学習技術
yudai00
1
81
MCPを理解する
yudai00
18
14k
「仮説行動」で学んだ、仮説を深め ていくための方法
yudai00
8
2k
相互推薦システムでのPseudo Label を活用したマッチ予測精度向上の取り組み
yudai00
1
1.1k
Wantedly Visitにおけるフリーワード検索時の推薦のオンライン化事例紹介
yudai00
1
330
Other Decks in Technology
See All in Technology
Agent Skils
dip_tech
PRO
0
140
Red Hat OpenStack Services on OpenShift
tamemiya
0
140
AIが実装する時代、人間は仕様と検証を設計する
gotalab555
1
620
SREのプラクティスを用いた3領域同時 マネジメントへの挑戦 〜SRE・情シス・セキュリティを統合した チーム運営術〜
coconala_engineer
2
780
Oracle AI Database移行・アップグレード勉強会 - RAT活用編
oracle4engineer
PRO
0
110
GitHub Copilot CLI を使いやすくしよう
tsubakimoto_s
0
110
[CV勉強会@関東 World Model 読み会] Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models (Mousakhan+, NeurIPS 2025)
abemii
0
150
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
5
1.6k
SREじゃなかった僕らがenablingを通じて「SRE実践者」になるまでのリアル / SRE Kaigi 2026
aeonpeople
6
2.6k
Kiro IDEのドキュメントを全部読んだので地味だけどちょっと嬉しい機能を紹介する
khmoryz
0
210
AIエージェントを開発しよう!-AgentCore活用の勘所-
yukiogawa
0
190
【Oracle Cloud ウェビナー】[Oracle AI Database + AWS] Oracle Database@AWSで広がるクラウドの新たな選択肢とAI時代のデータ戦略
oracle4engineer
PRO
2
190
Featured
See All Featured
Producing Creativity
orderedlist
PRO
348
40k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
3
110
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
170
Measuring & Analyzing Core Web Vitals
bluesmoon
9
760
Mind Mapping
helmedeiros
PRO
0
90
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
260
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
It's Worth the Effort
3n
188
29k
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
1
280
Automating Front-end Workflow
addyosmani
1371
200k
Transcript
© 2025 Wantedly, Inc. データバリデーションによるFeature Storeデータ品質の担保 めぐろLT #26 「データエンジニアリングよもやま」 Apr.
25 2025 - Yudai Hayashi
© 2025 Wantedly, Inc. 自己紹介 林 悠大 • 経歴: ◦
2022年に応用物理分野で Ph.D取得 ◦ 2022年にウォンテッドリー株式会社に新卒入社。データサイ エンティストとして推薦システムの開発に従事 @python_walker @Hayashi-Yudai
© 2025 Wantedly, Inc. 今日話すこと • 我々が管理している Feature Storeでのデータ品質担保の取り組みについて紹介 •
Table-to-Tableで特徴量を作成する際には、バリデーションが通っていないデータが最終テーブルに一 時的にでも存在しないことを担保することが重要
© 2025 Wantedly, Inc. 背景 - Feature Storeを自作して機械学習モデルに利用 • 各種特徴量を定期計算して
BigQueryに テーブルを作成する仕組み ◦ PythonFeature: Pythonを使っ て計算する特徴量 ◦ SQLFeature: SQLだけで計算す る特徴量 • 計算した特徴量は複数の機械学習シス テムで利用
© 2025 Wantedly, Inc. 課題 - 計算した特徴量が意図通りになっていなくても気づけない状態になっていた • 特徴量が「意図通りになっていない」とは? ◦
欠損するはずがないフィールドに欠損がある ◦ 全く同じデータが複数回出現する ◦ … • 意図通りになっていないと何がまずいか ◦ 人為的な特徴量のノイズにより、特徴量を学習に利用した機械学習モデルの性能が劣化する (garbage-in-garbage-out) 特徴量を作る際に十分なバリデーションをかけることが重要 ただし、SQLFeatureはBQ上で処理が完結するので、バリデーション方法を工夫する必要 がある
© 2025 Wantedly, Inc. 解決策 - 中間テーブルを作成してバリデーションを行う 要求:バリデーションを通っていないテーブルが存在しない • 中間テーブルを作成してからバリデーションをか
ける。通ったら最終テーブルにコピー • 特徴量の情報はYAMLで管理しており、そこから keyカラムを読み取る ◦ 特徴量計算するクエリを書くときはバリ デーションのことを考えなくてよい
© 2025 Wantedly, Inc. まとめ • 我々が管理している Feature Storeでのデータ品質担保の取り組みについて紹介 •
SQLだけで計算する特徴量においてバリデーションを行うために、一時テーブルを作成してバリデーション を行った後、最終テーブルにコピーするという方策を取った ◦ バリデーションを通っていないデータが最終テーブルに存在しないことを担保 ◦ バリデーションロジックを特徴量計算から切り離すことで、新しい特徴量を追加する時でも設定し忘 れるリスクを回避