Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ロジスティック回帰で お金もらえるし職務経歴書は倍になる
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
yush1ga
August 06, 2018
Programming
1
3.2k
ロジスティック回帰で お金もらえるし職務経歴書は倍になる
yush1ga
August 06, 2018
Tweet
Share
More Decks by yush1ga
See All by yush1ga
日系大手と日系スタートアップと外資系で働いてみた
yush1ga
2
790
Other Decks in Programming
See All in Programming
なるべく楽してバックエンドに型をつけたい!(楽とは言ってない)
hibiki_cube
0
140
ノイジーネイバー問題を解決する 公平なキューイング
occhi
0
110
Lambda のコードストレージ容量に気をつけましょう
tattwan718
0
150
dchart: charts from deck markup
ajstarks
3
1k
[KNOTS 2026登壇資料]AIで拡張‧交差する プロダクト開発のプロセス および携わるメンバーの役割
hisatake
0
300
AgentCoreとHuman in the Loop
har1101
5
250
Gemini for developers
meteatamel
0
100
KIKI_MBSD Cybersecurity Challenges 2025
ikema
0
1.3k
LLM Observabilityによる 対話型音声AIアプリケーションの安定運用
gekko0114
2
440
CSC307 Lecture 08
javiergs
PRO
0
670
Package Management Learnings from Homebrew
mikemcquaid
0
230
AI時代の認知負荷との向き合い方
optfit
0
170
Featured
See All Featured
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
1
750
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.9k
Why Our Code Smells
bkeepers
PRO
340
58k
エンジニアに許された特別な時間の終わり
watany
106
230k
Music & Morning Musume
bryan
47
7.1k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.2k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
62
50k
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
3
110
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
287
14k
Java REST API Framework Comparison - PWX 2021
mraible
34
9.2k
Transcript
ϩδεςΟοΫճؼͰ ͓ۚΒ͑Δ͠৬ܦྺॻഒʹͳΔ ࢤլ ༏ؽ
• େखWebܥاۀۈ (20164݄~, ৽ଔೖࣾ) • Apache Pulsar Committer (20176݄~) •
ϑΝΠϯσΟגࣜձࣾ ػցֶशΤϯδχΞ (20177݄~, ۀҕୗ) • IDAKS٬һݚڀһ (201810݄~༧ఆ) ࢤլ ༏ؽ
࣍ • ϩδεςΟοΫճؼͰ͓ۚΒ͑Δ • ৬ܦྺॻͷ • ͦͷଞΑ͔ͬͨ͜ͱͷ
ϩδεςΟοΫճؼͷ
͓ͼ • λΠτϧͪΐͬͱΓ • ϩδεςΟοΫճؼඇ Deep ͷϝλϑΝʔ
ػցֶशͱͷผΕ • େֶӃͰը૾ೝٕࣝज़Λར༻ͨ͠ݚڀ • ब৬ޙେنϛυϧΣΞ։ൃ • େنͳ։ൃָ͔͕ͬͨ͠ ػցֶश͔ΒΕΔ͜ͱʹ
͘झຯͰऔΓΉ • Kaggleʁ • উͪʹߦ͘ͳΒը૾ೝࣝܥ • Deep LearningΔͨΊͷGPU͕ͳ͍
͘झຯͰऔΓΉ • ͱΓ͋͑ͣجૅΛݻΊΔ • λΠλχοΫͷ٬ͷੜࢮ • ΞϠϝͷछྨ • 28×28ͷखॻ͖ͷࣈ Λ
ແҙຯʹࣝผ͢Δʑ
Findyͱͷग़ձ͍ ϢʔβΠϯλϏϡʔʹͯ 'JOEZͷ͋Δʁ ˓˓ͱ✗✗Ͱ͔͢Ͷ ͦΕͬͯղܾͰ͖Δ ͏ʔΜɺͦΕʜ
ϩδεςΟοΫճؼʂ
ελʔτΞοϓͷػցֶशࣄ • ͦΕ΄Ͳେنͳσʔλ͕ͳ͍߹͕ଟ͍ ※ → Deep Learning ͋·Γඞཁ͕ͳ͍ • ͘ઙ͘ඇ
Deep ͳࣝΛ ษڧ͓͍ͯͨ͠ͷ͕Α͔ͬͨ ※ ࢲͷؾ࣋ͪͰ͋Γɼ౷ܭత༗ҙੑ͋Γ·ͤΜ
৬ܦྺॻͷ
ࢦ໊ऩότϧ ٯٻਓͷస৬αΠτͰ ࢦ໊ऩότϧ͠ͳ͍ʁ 2ळ
ࢦ໊ऩότϧ ͑͑Ͱʂ ϥϯνΛ͔͚͍ͨઓ͍͕։࠵ ͑͑Ͱʂ ͑͑Ͱʂ ͑͑Ͱʂ
2ळͷ৬ܦྺॻ 14݄ (ೖࣾ) 210݄ 110݄ ݚम ϓϩδΣΫτ1 ී௨ʹಇ͍͍ͯΔͱ ৬ܦྺॻʹॻ͚Δͷ͜ͷ1͚ͭͩ
෭ۀ͕͋Δͱ͖ 14݄ (ೖࣾ) 210݄ 110݄ ݚम ϓϩδΣΫτ1 27݄ (෭ۀ։࢝)
ϓϩδΣΫτ2 2ݸॻ͚ΔͷͰ৬ܦྺॻ2ഒʂ
݁Ռ ࠷ߴࢦ໊ऩ: 1Ґ ฏۉࢦ໊ऩ: 1Ґ ɹ ࢦ໊: 2Ґ
ࢦ໊ͷ༁ ػցֶशΤϯδχΞɾσʔλαΠΤϯςΟετ ػցֶशΠϯϑϥɾόοΫΤϯυ ϑϧελοΫ ෆ໌
ࢦ໊ͷ༁ ػցֶशΤϯδχΞɾσʔλαΠΤϯςΟετ ػցֶशΠϯϑϥɾόοΫΤϯυ ϑϧελοΫ ෆ໌ ۀͰػցֶशͬͯͳ͍ͷʹʂ
ͦͷଞྑ͔ͬͨ͜ͱͷ
ຊۀػցֶशؔ࿈ʹ • R&Dҟಈ • ෭ۀͷ͓͔͛Ͱ ϒϥϯΫͦΕ΄Ͳ͖ͭ͘ͳ͍ • ຊۀͷ͓͔͛Ͱ ֶੜ࣌ΑΓwell-organizedͳίʔυ͕ॻ͚Δ
͔ΘΓʹفΔ͕࣌ؒ૿͑ͨ "EBN͞Μ ͓ئ͍͠·͢
·ͱΊ • ελʔτΞοϓͰ DeepLearning ΑΓ ඇ Deep ͳख๏ͷํཱ͕͔ͭ • ෭ۀΛ͢Δͱ৬ܦྺॻ͕Εͯ
స৬׆ಈʹཱ͔ͭ • ຊۀͷٕज़͕෭ۀʹɺ෭ۀͷٕज़͕ຊۀʹ ཱͭ͜ͱ͕͋Δ
EOP