Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ロジスティック回帰で お金もらえるし職務経歴書は倍になる
Search
yush1ga
August 06, 2018
Programming
1
3.2k
ロジスティック回帰で お金もらえるし職務経歴書は倍になる
yush1ga
August 06, 2018
Tweet
Share
More Decks by yush1ga
See All by yush1ga
日系大手と日系スタートアップと外資系で働いてみた
yush1ga
2
760
Other Decks in Programming
See All in Programming
#QiitaBash MCPのセキュリティ
ryosukedtomita
1
1.4k
技術同人誌をMCP Serverにしてみた
74th
1
660
XP, Testing and ninja testing
m_seki
3
250
Startups on Rails in Past, Present and Future–Irina Nazarova, RailsConf 2025
irinanazarova
0
140
なぜ「共通化」を考え、失敗を繰り返すのか
rinchoku
1
660
AIエージェントはこう育てる - GitHub Copilot Agentとチームの共進化サイクル
koboriakira
0
600
20250628_非エンジニアがバイブコーディングしてみた
ponponmikankan
0
700
設計やレビューに悩んでいるPHPerに贈る、クリーンなオブジェクト設計の指針たち
panda_program
6
2.2k
生成AI時代のコンポーネントライブラリの作り方
touyou
1
240
プロダクト志向なエンジニアがもう一歩先の価値を目指すために意識したこと
nealle
0
140
VS Code Update for GitHub Copilot
74th
2
660
ふつうの技術スタックでアート作品を作ってみる
akira888
1
890
Featured
See All Featured
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.4k
4 Signs Your Business is Dying
shpigford
184
22k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Producing Creativity
orderedlist
PRO
346
40k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Unsuck your backbone
ammeep
671
58k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.5k
Documentation Writing (for coders)
carmenintech
72
4.9k
Transcript
ϩδεςΟοΫճؼͰ ͓ۚΒ͑Δ͠৬ܦྺॻഒʹͳΔ ࢤլ ༏ؽ
• େखWebܥاۀۈ (20164݄~, ৽ଔೖࣾ) • Apache Pulsar Committer (20176݄~) •
ϑΝΠϯσΟגࣜձࣾ ػցֶशΤϯδχΞ (20177݄~, ۀҕୗ) • IDAKS٬һݚڀһ (201810݄~༧ఆ) ࢤլ ༏ؽ
࣍ • ϩδεςΟοΫճؼͰ͓ۚΒ͑Δ • ৬ܦྺॻͷ • ͦͷଞΑ͔ͬͨ͜ͱͷ
ϩδεςΟοΫճؼͷ
͓ͼ • λΠτϧͪΐͬͱΓ • ϩδεςΟοΫճؼඇ Deep ͷϝλϑΝʔ
ػցֶशͱͷผΕ • େֶӃͰը૾ೝٕࣝज़Λར༻ͨ͠ݚڀ • ब৬ޙେنϛυϧΣΞ։ൃ • େنͳ։ൃָ͔͕ͬͨ͠ ػցֶश͔ΒΕΔ͜ͱʹ
͘झຯͰऔΓΉ • Kaggleʁ • উͪʹߦ͘ͳΒը૾ೝࣝܥ • Deep LearningΔͨΊͷGPU͕ͳ͍
͘झຯͰऔΓΉ • ͱΓ͋͑ͣجૅΛݻΊΔ • λΠλχοΫͷ٬ͷੜࢮ • ΞϠϝͷछྨ • 28×28ͷखॻ͖ͷࣈ Λ
ແҙຯʹࣝผ͢Δʑ
Findyͱͷग़ձ͍ ϢʔβΠϯλϏϡʔʹͯ 'JOEZͷ͋Δʁ ˓˓ͱ✗✗Ͱ͔͢Ͷ ͦΕͬͯղܾͰ͖Δ ͏ʔΜɺͦΕʜ
ϩδεςΟοΫճؼʂ
ελʔτΞοϓͷػցֶशࣄ • ͦΕ΄Ͳେنͳσʔλ͕ͳ͍߹͕ଟ͍ ※ → Deep Learning ͋·Γඞཁ͕ͳ͍ • ͘ઙ͘ඇ
Deep ͳࣝΛ ษڧ͓͍ͯͨ͠ͷ͕Α͔ͬͨ ※ ࢲͷؾ࣋ͪͰ͋Γɼ౷ܭత༗ҙੑ͋Γ·ͤΜ
৬ܦྺॻͷ
ࢦ໊ऩότϧ ٯٻਓͷస৬αΠτͰ ࢦ໊ऩότϧ͠ͳ͍ʁ 2ळ
ࢦ໊ऩότϧ ͑͑Ͱʂ ϥϯνΛ͔͚͍ͨઓ͍͕։࠵ ͑͑Ͱʂ ͑͑Ͱʂ ͑͑Ͱʂ
2ळͷ৬ܦྺॻ 14݄ (ೖࣾ) 210݄ 110݄ ݚम ϓϩδΣΫτ1 ී௨ʹಇ͍͍ͯΔͱ ৬ܦྺॻʹॻ͚Δͷ͜ͷ1͚ͭͩ
෭ۀ͕͋Δͱ͖ 14݄ (ೖࣾ) 210݄ 110݄ ݚम ϓϩδΣΫτ1 27݄ (෭ۀ։࢝)
ϓϩδΣΫτ2 2ݸॻ͚ΔͷͰ৬ܦྺॻ2ഒʂ
݁Ռ ࠷ߴࢦ໊ऩ: 1Ґ ฏۉࢦ໊ऩ: 1Ґ ɹ ࢦ໊: 2Ґ
ࢦ໊ͷ༁ ػցֶशΤϯδχΞɾσʔλαΠΤϯςΟετ ػցֶशΠϯϑϥɾόοΫΤϯυ ϑϧελοΫ ෆ໌
ࢦ໊ͷ༁ ػցֶशΤϯδχΞɾσʔλαΠΤϯςΟετ ػցֶशΠϯϑϥɾόοΫΤϯυ ϑϧελοΫ ෆ໌ ۀͰػցֶशͬͯͳ͍ͷʹʂ
ͦͷଞྑ͔ͬͨ͜ͱͷ
ຊۀػցֶशؔ࿈ʹ • R&Dҟಈ • ෭ۀͷ͓͔͛Ͱ ϒϥϯΫͦΕ΄Ͳ͖ͭ͘ͳ͍ • ຊۀͷ͓͔͛Ͱ ֶੜ࣌ΑΓwell-organizedͳίʔυ͕ॻ͚Δ
͔ΘΓʹفΔ͕࣌ؒ૿͑ͨ "EBN͞Μ ͓ئ͍͠·͢
·ͱΊ • ελʔτΞοϓͰ DeepLearning ΑΓ ඇ Deep ͳख๏ͷํཱ͕͔ͭ • ෭ۀΛ͢Δͱ৬ܦྺॻ͕Εͯ
స৬׆ಈʹཱ͔ͭ • ຊۀͷٕज़͕෭ۀʹɺ෭ۀͷٕज़͕ຊۀʹ ཱͭ͜ͱ͕͋Δ
EOP