$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
dbtをAirflowで動かす道のりは続く...
Search
Yuu.Kimy
November 28, 2023
Technology
0
900
dbtをAirflowで動かす道のりは続く...
タイミーさんとの合同勉強会で発表させて頂いた資料です。
dbt CoreをAirflow(Cloud Composer)で動かした時の検証結果をまとめています。
Yuu.Kimy
November 28, 2023
Tweet
Share
More Decks by Yuu.Kimy
See All by Yuu.Kimy
Scheduled Queryの運用を楽にするBotを実装してみたお話
yuukimiya
0
190
Airflow社内勉強会@Classi
yuukimiya
0
190
DPCT発表資料.pdf
yuukimiya
0
9.6k
お家で子どもと楽しむプログラミング
yuukimiya
0
1.4k
Other Decks in Technology
See All in Technology
CARTAのAI CoE が挑む「事業を進化させる AI エンジニアリング」 / carta ai coe evolution business ai engineering
carta_engineering
0
2k
SQLだけでマイグレーションしたい!
makki_d
0
1.1k
MLflowダイエット大作戦
lycorptech_jp
PRO
1
140
初めてのDatabricks AI/BI Genie
taka_aki
0
210
大企業でもできる!ボトムアップで拡大させるプラットフォームの作り方
findy_eventslides
1
850
「図面」から「法則」へ 〜メタ視点で読み解く現代のソフトウェアアーキテクチャ〜
scova0731
0
370
AWS Security Agentの紹介/introducing-aws-security-agent
tomoki10
0
320
MySQLとPostgreSQLのコレーション / Collation of MySQL and PostgreSQL
tmtms
1
1k
ExpoのインダストリーブースでみたAWSが見せる製造業の未来
hamadakoji
0
150
Lessons from Migrating to OpenSearch: Shard Design, Log Ingestion, and UI Decisions
sansantech
PRO
1
150
AWS re:Invent 2025で見たGrafana最新機能の紹介
hamadakoji
0
430
Reinforcement Fine-tuning 基礎〜実践まで
ch6noota
0
190
Featured
See All Featured
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
16
Ethics towards AI in product and experience design
skipperchong
1
130
Making Projects Easy
brettharned
120
6.5k
Odyssey Design
rkendrick25
PRO
0
420
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
83
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
86
Information Architects: The Missing Link in Design Systems
soysaucechin
0
700
Thoughts on Productivity
jonyablonski
73
5k
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandezseo
0
82
Joys of Absence: A Defence of Solitary Play
codingconduct
1
250
Transcript
dbtをAirflowで動かす道のりは続く... 分析推進室 Kimiya Yuu
本日のお話 • タイトルの通り、dbt(dbt Core)をAirflowで動かすことを奮闘した記録です。 • まだ、検証段階ですので、不正確な情報が含まれているかもしれません。 ご了承くださいm(_ _)m
背景 • これまでAirflow(Cloud Composer)にて、定常的なバッチ更新で運用してきた。 ◦ 基本は、BigQueryに対するデータ更新処理 • ただ、日常の開発は、やり辛さが発生しており、開発体験が悪い.. ◦ ➜
dbtによる開発に切り替えたい • ただし、定常運用は、既に、オペレーションとしては確立しており、 大きくは変更したくない。 ➜ 学習コストがかかり、キャッチアップに時間がかかるため。 • 上記を踏まえ、dbtをAirflowで動かてみたい!
検討 • 以下の方式が考えられる • 折角、導入するのであれば、dbtで出来る体験をAirflowに持ち込みたい ➜ 上記により、#3で決定 ➜ 個人的に使ってみたかったというのも大いにありw #
dbt 実行概要 気になるポイント 1 dbt Core BashOperator利用 BashOperatorに閉じてしまう.. 2 dbt Cloud DbtCloudRunJobOperator利用 dbt Cloudをまだ導入していない ..& 同上 3 dbt Core Cosmosパッケージ利用 dbtのモデルもDAGの依存関係として表示可
What’s Cosmos ?? • Astronomer社が提供しているOSSであり、Airflow上でdbtを動かすことが可能 • Airflowの画面UIで、dbtのモデルのリネージを可視化できる! 参考: https://astronomer.github.io/astronomer-cosmos/index.html
環境 • 現状、利用している環境を踏まえて、以下を選択 • ※今、弊社で利用しているComposerで動いているAirflowのバージョンと Cosmosのバージョンで、Python的にはコンフリクトすることは無さそう🤗 ◦ Airflow: Cloud Composer
ver. 2.1.14 ◦ Cosmos: ver.1.2.0 ◦ dbt Core: ver.1.3.7 ◦ dbt-bigquery: ver.1.3.0 参考: https://astronomer.github.io/astronomer-cosmos/getting_started/execution-modes-local-conflicts.html
設定・実装 • 設定 ◦ Composer側に、PyPIからCosmosパッケージをインストールする ◦ GCSのディレクトリ構成は以下の通り • 実装 ◦
ドキュメントを参考に、DbtTaskGroup を利用して、 dbtのモデルの実行処理を実装する
ハマったこと • ドキュメント通りに実装しても、エラーが発生した... ◦ ドキュメント&コードはそれなりに読む必要がある ▪ 例: stringで渡すと書いてあったのに、 Pathオブジェクトで渡す必要があり.. (後述)
• dbt -> BigQueryの認証は、profiles.yml を渡して、ProfileConfigを生成すると、 json keyを利用しなくてもOK ◦ profiles.ymlには、BigQueryの実行権限を持つプロジェクトを指定 ◦ 事前に作成していないデータセットに、モデル結果を保存させると、 データセットまで作成するので、データセット生成の権限がないとエラー..
結果 ※補足: 上記の結果は、裏側では、dbt run が実行されている状態。dbt testは試していないですm(_ _)m
参考1
参考2
考察 • 既に、dbtのモデルの運用していたとしても、Cosmosを使った事前検証は必要 • AirflowのDAGの中で、dbtのモデルを表現できるのは強みと思しき ◦ dbtを利用する際は、基本的に、dbtのモデルを意識すれば良い • dbtのプロジェクトをDAGごとに分離できるのも強み ◦
完全に分離するのであれば、Docker/k8sを検討するのが良いと思しき ◦ ↑ただし、モデルの実行時間(全体)が長くなりそう.. • 小〜中規模なデータ分析基盤であれば、dbt + Cosmos + Airflowで十分かも ◦ 今年(2023年)にリリースされ、結構ホットなOSSであるが、 本番利用は慎重に検討したほうが良さそうな予感,,
Thank you for your attention !!