Upgrade to Pro — share decks privately, control downloads, hide ads and more …

ridgelasso

yuki
January 03, 2021
4.8k

 ridgelasso

yuki

January 03, 2021
Tweet

Transcript

  1. 3 (復習)最小二乗法で扱う誤差関数 ✓ 誤差関数を誤差の2乗の和とし 誤差関数が最小となるような係数を計算する (入力変数が2つの場合の)最小二乗法で扱う誤差関数E(w) = ෍ =1 1

    2 () − 0 + 1 1 () + 2 2 () 2 誤差の2乗 回帰平面 y=w 0 +w 1 x 1 +w 2 x 2 誤差 (残差) n個のデータを仮定 i番目のデータ (x 1 (i), x 2 (i), y(i)) x 1 y x 2 w 0 +w 1 x 1 (i)+w 2 x 2 (i) y(i) = 0 1 2
  2. 6 過学習とは ✓ M=9の例では回帰曲線が全てのデータを通っており 誤差関数E(w*)=0となっている ✓ これは与えられたデータ数が10組なのに対し 学習する係数も10個存在するため ✓ 回帰曲線はノイズに過度に引きずられており

    適切とは言えない⇒過学習と呼ばれる現象 = 0 + 1 1 + 2 2 + ⋯ + 8 8 + 9 9 与えられたノイズを含む点列に 過度に適合している ⇒過学習(過適合; over-fitting)
  3. 8 正則化項の導入 ✓ 誤差関数に正則化項を導入 ✓ 誤差最小化時に係数も最小化されるので過学習を抑制できる ✓ 正則化項の次数q=2の時の回帰手法をridge回帰 q=1の時の回帰手法をlassoと呼ぶ ෨

    = + 2 ෍ =0 二乗和誤差項 正則化項 ෍ =0 = ൝ 0 2 + 1 2 + ⋯ + 2 0 + 1 + ⋯ + 正則化項の代表的な例 q=2 ⇒ ridge回帰 q=1 ⇒ lasso : 二乗和誤差項と正則化項の 相対的な重要度を調整する ハイパーパラメータ (パラメータwを決定する ためのパラメータなので ハイパーパラメータと呼ぶ) 正則化最小二乗法で扱う誤差関数
  4. 11 誤差関数の幾何学的解釈(1/2) ✓ 線形回帰の誤差関数を考える ✓ 係数w0, w1に対する誤差関数の等高線は楕円型となる ෍ =1 1

    2 () − 0 + 1 1 () 2 二乗和誤差項(線形回帰) 二乗和誤差項が最小となる点 係数w0, w1に対する誤差項の変化
  5. 12 ✓ 正則化項は下図のようになる 0 2 + 1 2 正則化項(ridge) 0

    + 1 正則化項(lasso) 誤差関数の幾何学的解釈(2/2) 誤差関数が最小となる点は原点 係数w0, w1に対する正則化項の変化
  6. 13 なぜlassoはスパース解が得られやすいのか(1/2) ✓ 正則化項付き誤差関数の最小化を制約あり最小化に変換 min ෍ =1 1 2 ()

    − 0 + 1 1 () 2 + 2 ෍ =0 2 min ෍ =1 1 2 () − 0 + 1 1 () 2 . . ෍ =0 2 ≤ ラグランジュの未定乗数法より等価 : ラグランジュ乗数 から決まる定数 二乗和誤差項 正則化項 目的関数は二乗和誤差項のみ 正則化項は制約条件に w 0 w 1 (q=2の場合) 半径 √η の円内で 二乗和誤差が最小となる 点を探索する イメージ
  7. 14 なぜlassoはスパース解が得られやすいのか(2/2) ✓ lassoではスパース解となりやすい! スパース解が得られない場合 スパース解が得られる場合 ridge lasso w 0

    w 1 最適解(w 0 *,w 1 *) w 0 w 1 最適解 スパース解が 得られるケースは 極めて稀 w 0 w 1 w0 w1 最適解 最適解 中心が紫の領域内 だと係数が0に! 制約条件 制約条件 制約条件 制約条件 二乗和誤差 二乗和誤差