Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Regular Expressions Performance

A3Sec
June 27, 2013

Regular Expressions Performance

Optimizing event capture building better Ossim Agent plugins. Performance strategies.

A3Sec

June 27, 2013
Tweet

More Decks by A3Sec

Other Decks in Programming

Transcript

  1. About A3Sec • AlienVault's spin-off • Professional Services, SIEM deployments

    • Alienvault's Authorized Training Center (ATC) for Spain and LATAM • Team of more than 25 Security Experts • Own developments and tool integrations • Advanced Health Check Monitoring • Web: www.a3sec.com, Twitter: @a3sec
  2. About Me • David Gil <[email protected]> • Developer, Sysadmin, Project

    Manager • Really believes in Open Source model • Programming since he was 9 years old • Ossim developer at its early stage • Agent core engine (full regex) and first plugins • Python lover :-) • Debian package maintainer (a long, long time ago) • Sci-Fi books reader and mountain bike rider
  3. Summary 1. What is a regexp? 2. When to use

    regexp? 3. Regex basics 4. Performance Tests 5. Writing regexp (Performance Strategies) 6. Writing plugins (Performance Strategies) 7. Tools
  4. Regular Expressions What is a regex? Regular expression: (bb|[^b]{2})\d\d Input

    strings: bb445, 2ac3357bb, bb3aa2c7, a2ab64b, abb83fh6l3hi22ui
  5. Regular Expressions What is a regex? Regular expression: (bb|[^b]{2})\d\d Input

    strings: bb445, 2ac3357bb, bb3aa2c7, a2ab64b, abb83fh6l3hi22ui
  6. Summary 1. What is a regexp? 2. When to use

    regexp? 3. Regex basics 4. Performance Tests 5. Writing regexp (Performance Strategies) 6. Writing plugins (Performance Strategies) 7. Tools
  7. Regular Expressions To RE or not to RE • Regular

    expressions are almost never the right answer ◦ Difficult to debug and maintain ◦ Performance reasons, slower for simple matching ◦ Learning curve
  8. Regular Expressions To RE or not to RE • Regular

    expressions are almost never the right answer ◦ Difficult to debug and maintain ◦ Performance reasons, slower for simple matching ◦ Learning curve • Python string functions are small C loops: super fast! ◦ beginswith(), endswith(), split(), etc.
  9. Regular Expressions To RE or not to RE • Regular

    expressions are almost never the right answer ◦ Difficult to debug and maintain ◦ Performance reasons, slower for simple matching ◦ Learning curve • Python string functions are small C loops: super fast! ◦ beginswith(), endswith(), split(), etc. • Use standard parsing libraries! Formats: JSON, HTML, XML, CSV, etc.
  10. Regular Expressions To RE or not to RE Example: URL

    parsing • regex: ^(https?:\/\/)?([\da-z\.-]+)\.([a-z\.]{2,6})([\/\w \.-]*)*\/?$ • parse_url() php method: $url = "http://username:password@hostname/path?arg=value#anchor"; print_r(parse_url($url)); ( [scheme] => http [host] => hostname [user] => username [pass] => password [path] => /path [query] => arg=value [fragment] => anchor )
  11. Regular Expressions To RE or not to RE But, there

    are a lot of reasons to use regex: • powerful • portable • fast (with performance in mind) • useful for complex patterns • save development time • short code • fun :-) • beautiful?
  12. Summary 1. What is a regexp? 2. When to use

    regexp? 3. Regex basics 4. Performance Tests 5. Writing regexp (Performance Strategies) 6. Writing plugins (Performance Strategies) 7. Tools
  13. Regular Expressions Basics - Characters • \d, \D: digits. \w,

    \W: words. \s, \S: spaces >>> re.findall('\d\d\d\d-(\d\d)-\d\d', '2013-07-21') >>> re.findall('(\S+)\s+(\S+)', 'foo bar') • ^, $: Begin/End of string >>> re.findall('(\d+)', 'cba3456csw') >>> re.findall('^(\d+)$', 'cba3456csw') • . (dot): Any character: >>> re.findall('foo(.)bar', 'foo=bar') >>> re.findall('(...)=(...)', 'foo=bar')
  14. Regular Expressions Basics - Repetitions • *, +: 0-1 or

    more repetitions >>> re.findall('FO+', 'FOOOOOOOOO') >>> re.findall('BA*R', 'BR') • ?: 0 or 1 repetitions >>> re.findall('colou?r', 'color') >>> re.findall('colou?r', 'colour') • {n}, {n,m}: N repetitions: >>> re.findall('\d{2}', '2013-07-21') >>> re.findall('\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}','192.168.1.25')
  15. Regular Expressions Basics - Groups [...]: Set of characters >>>

    re.findall('[a-z]+=[a-z]+', 'foo=bar') ...|...: Alternation >>> re.findall('(foo|bar)=(foo|bar)', 'foo=bar') (...) and \1, \2, ...: Group >>> re.findall(r'(\w+)=(\1)', 'foo=bar') >>> re.findall(r'(\w+)=(\1)', 'foo=foo') (?P<name>...): Named group >>> re.findall('\d{4}-\d{2}-(?P<day>\d{2}'), '2013-07-23')
  16. Regular Expressions Greedy & Lazy quantifiers: *?, +? • Greedy

    vs non-greedy (lazy) >>> re.findall('A+', 'AAAA') ['AAAA'] >>> re.findall('A+?', 'AAAA') ['A', 'A', 'A', 'A']
  17. Regular Expressions Greedy & Lazy quantifiers: *?, +? • Greedy

    vs non-greedy (lazy) >>> re.findall('A+', 'AAAA') ['AAAA'] >>> re.findall('A+?', 'AAAA') ['A', 'A', 'A', 'A'] • An overall match takes precedence over and overall non-match >>> re.findall('<.*>.*</.*>', '<B>i am bold</B>') >>> re.findall('<(.*)>.*</(.*)>', '<B>i am bold</B>')
  18. Regular Expressions Greedy & Lazy quantifiers: *?, +? • Greedy

    vs non-greedy (lazy) >>> re.findall('A+', 'AAAA') ['AAAA'] >>> re.findall('A+?', 'AAAA') ['A', 'A', 'A', 'A'] • An overall match takes precedence over and overall non-match >>> re.findall('<.*>.*</.*>', '<B>i am bold</B>') >>> re.findall('<(.*)>.*</(.*)>', '<B>i am bold</B>') • Minimal matching, non-greedy >>> re.findall('<(.*)>.*', '<B>i am bold</B>') >>> re.findall('<(.*?)>.*', '<B>i am bold</B>')
  19. Summary 1. What is a regexp? 2. When to use

    regexp? 3. Regex basics 4. Performance Tests 5. Writing regexp (Performance Strategies) 6. Writing plugins (Performance Strategies) 7. Tools
  20. Regular Expressions Performance Tests Different implementations of a custom is_a_word()

    function: • #1 Regexp • #2 Char iteration • #3 String functions
  21. Regular Expressions Performance Test #1 def is_a_word(word): CHARS = string.uppercase

    + string.lowercase regexp = r'^[%s]+$' % CHARS if re.search(regexp, word) return "YES" else "NOP"
  22. Regular Expressions Performance Test #1 def is_a_word(word): CHARS = string.uppercase

    + string.lowercase regexp = r'^[%s]+$' % CHARS if re.search(regexp, word) return "YES" else "NOP" timeit.timeit(s, 'is_a_word(%s)' %(w)) 1.49650502205 YES len=4 word 1.65614509583 YES len=25 wordlongerthanpreviousone.. 1.92520785332 YES len=60 wordlongerthanpreviosoneplusan.. 2.38850092888 YES len=120 wordlongerthanpreviosoneplusan.. 1.55924701691 NOP len=10 not a word 1.7087020874 NOP len=25 not a word, just a phrase.. 1.92521882057 NOP len=50 not a word, just a phrase bigg.. 2.39075493813 NOP len=102 not a word, just a phrase bigg..
  23. Regular Expressions Performance Test #1 def is_a_word(word): CHARS = string.uppercase

    + string.lowercase regexp = r'^[%s]+$' % CHARS if re.search(regexp, word) return "YES" else "NOP" timeit.timeit(s, 'is_a_word(%s)' %(w)) 1.49650502205 YES len=4 word 1.65614509583 YES len=25 wordlongerthanpreviousone.. 1.92520785332 YES len=60 wordlongerthanpreviosoneplusan.. 2.38850092888 YES len=120 wordlongerthanpreviosoneplusan.. 1.55924701691 NOP len=10 not a word 1.7087020874 NOP len=25 not a word, just a phrase.. 1.92521882057 NOP len=50 not a word, just a phrase bigg.. 2.39075493813 NOP len=102 not a word, just a phrase bigg.. If the target string is longer, the regex matching is slower. No matter if success or fail.
  24. Regular Expressions Performance Test #2 def is_a_word(word): for char in

    word: if not char in (CHARS): return "NOP" return "YES"
  25. Regular Expressions Performance Test #2 def is_a_word(word): for char in

    word: if not char in (CHARS): return "NOP" return "YES" timeit.timeit(s, 'is_a_word(%s)' %(w)) 0.687522172928 YES len=4 word 1.0725839138 YES len=25 wordlongerthanpreviousone.. 2.34717106819 YES len=60 wordlongerthanpreviosoneplusan.. 4.31543898582 YES len=120 wordlongerthanpreviosoneplusan.. 0.54797577858 NOP len=10 not a word 0.547253847122 NOP len=25 not a word, just a phrase.. 0.546499967575 NOP len=50 not a word, just a phrase bigg.. 0.553755998611 NOP len=102 not a word, just a phrase bigg..
  26. Regular Expressions Performance Test #2 def is_a_word(word): for char in

    word: if not char in (CHARS): return "NOP" return "YES" timeit.timeit(s, 'is_a_word(%s)' %(w)) 0.687522172928 YES len=4 word 1.0725839138 YES len=25 wordlongerthanpreviousone.. 2.34717106819 YES len=60 wordlongerthanpreviosoneplusan.. 4.31543898582 YES len=120 wordlongerthanpreviosoneplusan.. 0.54797577858 NOP len=10 not a word 0.547253847122 NOP len=25 not a word, just a phrase.. 0.546499967575 NOP len=50 not a word, just a phrase bigg.. 0.553755998611 NOP len=102 not a word, just a phrase bigg.. 2 python nested loops if success (slow) But fails at the same point&time (first space)
  27. Regular Expressions Performance Test #3 def is_a_word(word): return "YES" if

    word.isalpha() else "NOP" timeit.timeit(s, 'is_a_word(%s)' %(w)) 0.146447896957 YES len=4 word 0.212563037872 YES len=25 wordlongerthanpreviousone.. 0.318686008453 YES len=60 wordlongerthanpreviosoneplusan.. 0.493942975998 YES len=120 wordlongerthanpreviosoneplusan.. 0.14647102356 NOP len=10 not a word 0.146160840988 NOP len=25 not a word, just a phrase.. 0.147103071213 NOP len=50 not a word, just a phrase bigg.. 0.146239995956 NOP len=102 not a word, just a phrase bigg..
  28. Regular Expressions Performance Test #3 def is_a_word(word): return "YES" if

    word.isalpha() else "NOP" timeit.timeit(s, 'is_a_word(%s)' %(w)) 0.146447896957 YES len=4 word 0.212563037872 YES len=25 wordlongerthanpreviousone.. 0.318686008453 YES len=60 wordlongerthanpreviosoneplusan.. 0.493942975998 YES len=120 wordlongerthanpreviosoneplusan.. 0.14647102356 NOP len=10 not a word 0.146160840988 NOP len=25 not a word, just a phrase.. 0.147103071213 NOP len=50 not a word, just a phrase bigg.. 0.146239995956 NOP len=102 not a word, just a phrase bigg.. Python string functions (fast and small C loops)
  29. Summary 1. What is a regexp? 2. When to use

    regexp? 3. Regex basics 4. Performance Tests 5. Writing regexp (Performance Strategies) 6. Writing plugins (Performance Strategies) 7. Tools
  30. Regular Expressions Performance Strategies Writing regex • Be careful with

    repetitions (+, *, {n,m}) (abc|def){2,4} produces (abc|def)(abc|def)((abc|def)(abc|def)?)?
  31. Regular Expressions Performance Strategies Writing regex • Be careful with

    repetitions (+, *, {n,m}) (abc|def){2,4} produces (abc|def)(abc|def)((abc|def)(abc|def)?)? (abc|def){2,1000} produces ...
  32. Regular Expressions Performance Strategies Writing regex • Be careful with

    repetitions (+, *, {n,m}) (abc|def){2,4} produces (abc|def)(abc|def)((abc|def)(abc|def)?)? (abc|def){2,1000} produces ... • Be careful with wildcards re.findall(r'(ab).*(cd).*(ef)', 'ab cd ef')
  33. Regular Expressions Performance Strategies Writing regex • Be careful with

    repetitions (+, *, {n,m}) (abc|def){2,4} produces (abc|def)(abc|def)((abc|def)(abc|def)?)? (abc|def){2,1000} produces ... • Be careful with wildcards re.findall(r'(ab).*(cd).*(ef)', 'ab cd ef') # slower re.findall(r'(ab)\s(cd)\s(ef)', 'ab cd ef') # faster
  34. Regular Expressions Performance Strategies Writing regex • Be careful with

    repetitions (+, *, {n,m}) (abc|def){2,4} produces (abc|def)(abc|def)((abc|def)(abc|def)?)? (abc|def){2,1000} produces ... • Be careful with wildcards re.findall(r'(ab).*(cd).*(ef)', 'ab cd ef') # slower re.findall(r'(ab)\s(cd)\s(ef)', 'ab cd ef') # faster • Longer target string -> slower regex matching
  35. Regular Expressions Performance Strategies Writing regex • Use the non-capturing

    group when no need to capture and save text to a variable (?:abc|def|ghi) instead of (abc|def|ghi)
  36. Regular Expressions Performance Strategies Writing regex • Use the non-capturing

    group when no need to capture and save text to a variable (?:abc|def|ghi) instead of (abc|def|ghi) • Pattern most likely to match first (TRAFFIC_ALLOW|TRAFFIC_DROP|TRAFFIC_DENY)
  37. Regular Expressions Performance Strategies Writing regex • Use the non-capturing

    group when no need to capture and save text to a variable (?:abc|def|ghi) instead of (abc|def|ghi) • Pattern most likely to match first (TRAFFIC_ALLOW|TRAFFIC_DROP|TRAFFIC_DENY) TRAFFIC_(ALLOW|DROP|DENY)
  38. Regular Expressions Performance Strategies Writing regex • Use the non-capturing

    group when no need to capture and save text to a variable (?:abc|def|ghi) instead of (abc|def|ghi) • Pattern most likely to match first (TRAFFIC_ALLOW|TRAFFIC_DROP|TRAFFIC_DENY) TRAFFIC_(ALLOW|DROP|DENY) • Use anchors (^ and $) to limit the score re.findall(r'(ab){2}', 'abcabcabc') re.findall(r'^(ab){2}','abcabcabc') #failures occur faster
  39. Summary 1. What is a regexp? 2. When to use

    regexp? 3. Regex basics 4. Performance Tests 5. Writing regexp (Performance Strategies) 6. Writing plugins (Performance Strategies) 7. Tools
  40. Regular Expressions Performance Strategies Writing Agent plugins • A new

    process is forked for each loaded plugin ◦ Use the plugins that you really need!
  41. Regular Expressions Performance Strategies Writing Agent plugins • A new

    process is forked for each loaded plugin ◦ Use the plugins that you really need! • A plugin is a set of rules (regexp operations) for matching log lines ◦ If a plugin doesn't match a log entry, it fails in ALL its rules! ◦ Reduce the number of rules, use a [translation] table
  42. Regular Expressions Performance Strategies Writing Agent plugins • Alphabetical order

    for rule matching ◦ Order your rules by priority, pattern most likely to match first
  43. Regular Expressions Performance Strategies Writing Agent plugins • Alphabetical order

    for rule matching ◦ Order your rules by priority, pattern most likely to match first • Divide and conquer ◦ A plugin is configured to read from a source file, use dedicated source files per technology ◦ Also, use dedicated plugins for each technology
  44. Regular Expressions Performance Strategies Tool1 20 logs/sec Tool2 20 logs/sec

    Tool3 20 logs/sec /var/log/syslog Tool4 20 logs/sec (100 logs/sec) Tool5 20 logs/sec 5 plugins with 1 rule reading /var/log/syslog 5x100 = 500 total regex/sec
  45. Regular Expressions Performance Strategies Tool1 20 logs/sec /var/log/tool1 Tool2 20

    logs/sec /var/log/tool2 Tool3 20 logs/sec /var/log/tool3 Tool4 20 logs/sec /var/log/tool4 Tool5 20 logs/sec /var/log/tool5 (100 logs/sec) 5 plugins with 1 rule reading /var/log/tool{1-5} 5x20 = 100 total regex/sec (x5) Faster
  46. Summary 1. What is a regexp? 2. When to use

    regexp? 3. Regex basics 4. Performance Tests 5. Writing regexp (Performance Strategies) 6. Writing plugins (Performance Strategies) 7. Tools
  47. Regular Expressions Tools for testing Regex Python: >>> import re

    >>> re.findall('(\S+) (\S+)', 'foo bar') [('foo', 'bar')] >>> result = re.search( ... '(?P<key>\w+)\s*=\s*(?P<value>\w+)', ... 'foo=bar' ... ) >>> result.groupdict() { 'key': 'foo', 'value': 'bar' }
  48. Regular Expressions Tools for testing Regex Regex debuggers: • Kiki

    • Kodos Online regex testers: • http://gskinner.com/RegExr/ (java) • http://regexpal.com/ (javascript) • http://rubular.com/ (ruby) • http://www.pythonregex.com/ (python) Online regex visualization: • http://www.regexper.com/ (javascript)
  49. A3Sec web: www.a3sec.com email: [email protected] twitter: @a3sec Spain Head Office

    C/ Aravaca, 6, Piso 2 28040 Madrid Tlf. +34 533 09 78 México Head Office Avda. Paseo de la Reforma, 389 Piso 10 México DF Tlf. +52 55 5980 3547