Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ガウス過程と機械学習 3章後半
Search
Asei Sugiyama
August 18, 2019
Technology
0
6.2k
ガウス過程と機械学習 3章後半
「ガウス過程と機械学習」輪読会(リターンズ) #3 の発表資料です
https://reading-circle-beginners.connpass.com/event/142115/
Asei Sugiyama
August 18, 2019
Tweet
Share
More Decks by Asei Sugiyama
See All by Asei Sugiyama
基調講演: 生成AIを活用したアプリケーションの開発手法とは?
asei
1
260
Eval-Centric AI: GenAI における継続的改善の実現
asei
2
120
AI の活用における課題と現状、今後の期待
asei
4
710
MLOps の現場から
asei
9
1.1k
LLMOps: Eval-Centric を前提としたMLOps
asei
7
930
The Rise of LLMOps
asei
13
3.3k
生成AIの活用パターンと継続的評価
asei
15
3.2k
最近の Citadel AI の取り組みのご紹介 (Nov, 2024)
asei
2
180
仕事で取り組む 生成 AI 時代の対話の品質評価
asei
2
110
Other Decks in Technology
See All in Technology
米国国防総省のDevSecOpsライフサイクルをAWSのセキュリティサービスとOSSで実現
syoshie
2
1.2k
PHP開発者のためのSOLID原則再入門 #phpcon / PHP Conference Japan 2025
shogogg
4
900
250627 関西Ruby会議08 前夜祭 RejectKaigi「DJ on Ruby Ver.0.1」
msykd
PRO
2
340
TechLION vol.41~MySQLユーザ会のほうから来ました / techlion41_mysql
sakaik
0
190
監視のこれまでとこれから/sakura monitoring seminar 2025
fujiwara3
11
4k
Oracle Audit Vault and Database Firewall 20 概要
oracle4engineer
PRO
3
1.7k
AI導入の理想と現実~コストと浸透〜
oprstchn
0
120
Fabric + Databricks 2025.6 の最新情報ピックアップ
ryomaru0825
1
150
Node-RED × MCP 勉強会 vol.1
1ftseabass
PRO
0
170
なぜ私はいま、ここにいるのか? #もがく中堅デザイナー #プロダクトデザイナー
bengo4com
0
1.2k
GitHub Copilot の概要
tomokusaba
1
140
プロダクトエンジニアリング組織への歩み、その現在地 / Our journey to becoming a product engineering organization
hiro_torii
0
130
Featured
See All Featured
How STYLIGHT went responsive
nonsquared
100
5.6k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Being A Developer After 40
akosma
90
590k
How to train your dragon (web standard)
notwaldorf
94
6.1k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
940
Mobile First: as difficult as doing things right
swwweet
223
9.7k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
800
Become a Pro
speakerdeck
PRO
28
5.4k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Adopting Sorbet at Scale
ufuk
77
9.4k
Docker and Python
trallard
44
3.4k
The World Runs on Bad Software
bkeepers
PRO
69
11k
Transcript
Ψεաఔͱػցֶश 3.4 - 3.6
ࣗݾհ • ਿࢁ Ѩ • Software Engineer @Repro • ػցֶशͱ͔౷ܭͱ͔։ൃͱ͔
• ػցֶशਤؑ ڞஶ
ํ & ग़య • Ψεաఔͱػցֶशͷ 3.4 - 3.6 Λத৺ʹѻ͍·͢ •
ग़యΛ໌ه͍ͯ͠ͳ͍ਤ͜ͷॻ੶ ͔ΒͷҾ༻Ͱ͢ • ͚ͩ͜͜Λ͢ͷ͍͠ͷͰɺ෮श ͔ΒೖΓ·͢ • ϕΠζਪʹΑΔػցֶशೖ • 3.1 - 3.3 • 3.4 - 3.6
༰ ֓ཁ ϙΠϯτ ϕΠζਪʹΑΔػցֶशೖ ϕΠζਪʹ͓͚Δֶशͱਪ Ψεաఔͷఆٛ ఆٛͱΧʔωϧτϦοΫ ΨεաఔճؼϞσϧ Ψεաఔʹ͓͚Δਪํ๏ ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ
Ψεաఔʹ͓͚Δֶशํ๏ ΨεաఔճؼͷҰൠԽ ਖ਼نҎ֎ΛԾఆͨ͠Ψεաఔ
࣍ 1.ϕΠζਪʹΑΔػցֶशೖ <- 2.Ψεաఔ֓ཁ 3.ΨεաఔճؼϞσϧ 4.ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ 5.ΨεաఔճؼͷҰൠԽ
ϕΠζਪʹΑΔػցֶशೖ • ஶऀ : ਢࢁರࢤ (@sammy_suyama) • ଞʹʮϕΠζਂֶशʯ • ϕΠζਪͷجૅʹ͍ͭͯͷຊ
• ࣍ͷ༰Λ෮श͢Δ 1.ϕΠζਪ 2.MCMC (ΪϒεαϯϓϦϯά) 3.ઢܗճؼ 4.ϩδεςΟοΫճؼ
ϕΠζਪ ܇࿅σʔλͷू߹Λ ɺϞσϧͷύϥϝʔλʔΛ ɺະ؍ଌͷ σʔλΛ ͱͯ͠ • Ϟσϧ : •
ֶश : • ਪ :
MCMC (ΪϒεαϯϓϦϯά) ͋Δ֬ ͔Βαϯϓϧ Λಘ͍ͨ߹ɺ࣍ͷΑ͏ʹ͖͔݅֬Βஞ࣍αϯϓϦϯά ͢Δ͜ͱͰɺۙࣅతʹͱͷʹै͏αϯϓϧྻΛಘΒΕΔɻ
ઢܗճؼ • ೖྗΛ ग़ྗΛ ॏΈΛ , ϊΠζΛ ͱ͠ ͯɺઢܗճؼ ͱఆࣜԽͰ͖Δ
• ϊΠζʹ͍ͭͯ ΛԾఆ͢Δͱɺग़ྗ ͱਖ਼نʹै͏ • ॏΈʹ͍ͭͯ ΛԾఆ͢Δͱɺࣄޙ ͕ਖ਼نʹै͏ (ϕΠζਪͷҙຯͰֶशՄೳ)
ϩδεςΟοΫճؼ (1/3) ଟ࣍ݩϕΫτϧ ͕࣍ͷΑ͏ͳΧςΰϦʹैͬͯग़ྗ͞Ε Δͷͱ͢Δɻ ͜͜Ͱɺ ඇઢܗؔͰɺࠓճ Softmax ؔΛ༻͍Δɻ
ϩδεςΟοΫճؼ (2/3) • ֶशͷͨΊʹೖྗͱग़ྗͷσʔληοτ ͔Β ͷࣄޙΛܭࢉ • Softmax ͕ؔೖͬͯ͠·͍ͬͯΔͨΊʹࣄޙΛղੳత ʹܭࢉͰ͖ͳ͍ͷͰมਪΛߦ͍ɺۙࣅղΛܭࢉ
• ͱͯ͠ KL μΠόʔδΣ ϯε Λ࠷খԽ͢Δ (มਪ)
ϩδεςΟοΫճؼ (3/3) • ୈ 3 ߲ΛղੳతʹܭࢉͰ͖ͳ͍ͷͰޯ๏ͰۙࣅղΛٻΊΔ • ϞϯςΧϧϩ๏ʹ͓͍ͯɺ ͕ಘΒΕͨͷͩͱΈͳ͢ (
ΛαϯϓϦϯάͨ͠ͷͩͱߟ͑Δ) ࠶ύϥϝʔ λʔԽτϦοΫʹΑΓޯ͕ܭࢉͰ͖Δ
ϕΠζਪʹΑΔػցֶशೖ Recap ߲ ϙΠϯτ 1. ϕΠζਪ ֶशͰਪͰ֬Λߟ͑Δ 2. MCMC (ΪϒεαϯϓϦϯά)
ෳࡶͳΛۙࣅ͢Δख๏͕͋Δ 3. ઢܗճؼ ॏΈΛ֬มͩͱଊֶ͑ͯश͢Δ 4. ϩδεςΟοΫճؼ ޯ߱Լ๏ΛϕΠζͰ͑Δ
༨ஊ ϕΠζਂֶश • ୈ 1 ষ ͡Ίʹ • ୈ 2
ষ χϡʔϥϧωοτϫʔΫͷج ૅ • ୈ 3 ষ ϕΠζਪͷجૅ • ୈ 4 ষ ۙࣅϕΠζਪ • ୈ 5 ষ χϡʔϥϧωοτϫʔΫͷϕ Πζਪ • ୈ 6 ষ ਂੜϞσϧ • ୈ 7 ষ ਂֶशͱΨεաఔ
࣍ 1.ϕΠζਪʹΑΔػցֶशೖ 2.Ψεաఔ֓ཁ <- 3.ΨεաఔճؼϞσϧ 4.ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ 5.ΨεաఔճؼͷҰൠԽ
Ψεաఔ֓ཁ ߲ ϙΠϯτ 1. Ψεաఔͷఆٛ ฏۉͱڞࢄߦྻͰܾ·Δ 2. Χʔωϧؔͷಋೖ ΧʔωϧؔੵΛҰൠԽͨ͠ͷ 3.
ΧʔωϧؔͱάϥϜߦྻ άϥϜߦྻ͕Ψεաఔʹ͓͚Δڞࢄ ߦྻʹͳΔ 4. ؍ଌϊΠζͱΧʔωϧؔ ΧʔωϧؔʹΑΓΨεաఔͰ͞·͟ ·ͳϞσϧΛදݱͰ͖Δ
Ψεաఔͷఆٛ • Wikipedia (English) ͷఆٛ࣍ ͷ௨Γ ֬աఔ ͕࣍ͷ݅Λຬͨ ͢ͱ͖ɺΨεաఔͱݺͿɻ ఴࣈू߹
ͷҙͷ༗ݶ෦ू߹ ʹର͠ɺ ͕ଟ࣍ݩਖ਼ن ʹै͏ɻ
Χʔωϧؔͷಋೖ ؔ ͕࣍Λຬͨ͢ͱ͖ɺਖ਼ఆΧʔωϧͱݴ͏ ҙͷ ʹର͠ 1. (ରশੑ) 2. (ਖ਼ఆੑ) ੵͷҰൠԽͰ͋ΓɺσʔλؒͷྨࣅΛද͢
(ཧ༝͋ͱͰ)
ΧʔωϧؔͱάϥϜߦྻ ҙͷσʔλྻ ͱΧʔωϧؔ ʹର͠ɺߦྻ ͷ Λ࣍Ͱఆٛͨ͠ͷΛάϥϜߦྻ·ͨ ΧʔωϧߦྻͱݺͿ • ΧʔωϧؔΛ༻͍ͨڞࢄߦྻͷҰൠԽ •
Χʔωϧؔͷਖ਼ఆੑάϥϜߦྻͷݻ༗͕શͯ 0 Ҏ্ Ͱ͋Δ͜ͱʹಉ͡
ิ Mercer ͷఆཧ • ਖ਼ఆΧʔωϧ ʹରͯ͠ɺ࣍Λຬ ͨ͢Α͏ͳಛۭؒͷࣹӨ ͕ ଘࡏ͢Δɺͱ͍͏ఆཧ •
ࣹӨ͢Δಛۭؒͷ࣍ݩҰൠʹ༗ ݶͰͳ͍ • ͭ·ΓຊʹӈͷΑ͏ʹͳ͍ͬͯΔͱ ࢥͬͯྑ͍ (ػցֶशਤ͔ؑΒൈਮ)
Ψεաఔͷఆٛ (Χʔωϧ๏)
؍ଌϊΠζͱΧʔωϧؔ • ઢܗճؼ ʹ͓͍ͯɺ ͱ ͓͖ɺ ͱ ΛԾఆ͢Δ • ͜ͷͱ͖
Ͱ ( ͱͨ͠) • ͕ਖ਼ఆͰ͋Δ͜ͱͱɺΧʔωϧؔʹดͯ͡ ͍Δ͜ͱΛ༻͍Δͱ ͱ͍͏ ৽͍͠ΧʔωϧؔΛఆٛͨ͠ͱΈͳͤΔ
Ψεաఔ֓ཁ Recap ߲ ϙΠϯτ 1. Ψεաఔͷఆٛ ฏۉͱڞࢄߦྻͰܾ·Δ 2. Χʔωϧؔͷಋೖ ΧʔωϧؔੵΛҰൠԽͨ͠ͷ
3. ΧʔωϧؔͱάϥϜߦྻ άϥϜߦྻ͕Ψεաఔʹ͓͚Δڞࢄ ߦྻʹͳΔ 4. ؍ଌϊΠζͱΧʔωϧؔ ΧʔωϧؔʹΑΓΨεաఔͰ͞·͟ ·ͳϞσϧΛදݱͰ͖Δ
࣍ 1.ϕΠζਪʹΑΔػցֶशೖ 2.Ψεաఔ֓ཁ 3.ΨεաఔճؼϞσϧ <- 4.ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ 5.ΨεաఔճؼͷҰൠԽ
ΨεաఔճؼϞσϧ ߲ ༰ 1. Ψεաఔͷ༧ଌ ΨεաఔͰͷਪํ๏ 2. Ψεաఔճؼͷܭࢉ ࣮ํ๏ͱܭࢉྔ 3.
Ψεճؼաఔͷཁૉදݱ ଞͷख๏ͱͷؔ࿈
Ψεաఔͷ༧ଌ • ֶशσʔλ Λͬͯະσʔλ ʹର͢Δग़ྗ Λ༧ଌ͍ͨ͠ ( ͱ͢Δ) • ͱ͍͏͕ؔ͋Γ
ͱ͢Δ • ͷै͏άϥϜߦྻ Λ༻͍Δͱɺ (ΨεաఔͷఆٛΑΓ) • ະσʔλͰͲ͏͖͔͢Λߟ͍͑ͨ
ະσʔλʹର͢Δਪ (1/2) • ະͷೖྗ ʹର͢Δग़ྗ Λؚ ΊͯάϥϜߦྻΛܭࢉͯ͠ਪ͢Δ • ະσʔλΛՃ͑ͨग़ྗ ͱɺະσʔλΛ
Ճ͑ͨάϥϜߦྻ Λܭࢉ͢Δ • ະσʔλΛؚΊͨग़ྗͷ (ط σʔλͱະσʔλͷಉ࣌֬) ͕ਪͰ͖Δ
ະσʔλʹର͢Δਪ (2/2) • ಉ࣌ ͔Β͖݅֬ ΛٻΊΔ • ଟ࣍ݩਖ਼نͷҰ෦͕༩͑ΒΕͨͱ ͖ͷ݁ՌΛ༻͍Δ
• ະσʔλ͕ෳ͋Δͱ͖ಉ༷
None
Ψεաఔճؼͷܭࢉ (1/2) • ֬ ͷύϥ ϝʔλͷܭࢉʹ͓͍ͯɺ ͷܭࢉ͕ඞཁ • ٯߦྻͷܭࢉͰϥϯΫ (͜͜Ͱσʔλྔ)
ʹରͯ͠ܭ ࢉྔ͕ ඞཁʹͳΔͨΊͳΜͱ͔ͯ͠ճආ͍ͨ͠ • ΨγΞϯΧʔωϧͰճආͰ͖Δ • ৄ͘͠ 5 ষͰ!
Ψεաఔճؼͷܭࢉ (2/2) • ۪ͳ࣮ͰؾʹͳΔՕॴΛݕ౼͢Δ • K[n, n'] ͷϝϞϦফඅྔ͕σʔλ ʹରͯ͠ •
ٯߦྻͷܭࢉྔ͕ߴ͍ ( ) • άϥϜߦྻͷܭࢉྔߴ͍ ( ) • train ʹ֘͢Δ෦͕ͳ͍ • άϥϜߦྻΛهԱ͢Δ͚ͩ • ޙ΄Ͳ࠶ݕ౼
Ψεճؼաఔͷཁૉදݱ (1/3) • ฏۉʹ͍ͭͯݕ౼͢Δ • ͱ͓͘ͱɺ
Ψεճؼաఔͷཁૉදݱ (2/3) • Λݕ౼͢Δ ( ݻఆͯ͠ߟ͑Δ) • ൪ͷσʔλͱະ σʔλͷྨࣅ
• ൪ͷσʔλͱͷ ൪ͷσʔ λͷؔ࿈߹͍ • ະσʔλ͕ ൪ͷطσʔλ ͱͲΕ͚ͩؔ࿈͢Δ͔ɺશମతͳฏۉ Λͱͬͨͷ
Ψεճؼաఔͷཁૉදݱ (3/3) • , ͱఆ ٛ͢Δͱɺ࣍ͷΑ͏ʹॻ͚Δ* • ͜ͷܭࢉάϥϑߏͰ͔͚Δ * ӈਤͱผͷఆٛ
ΨεաఔճؼϞσϧ Recap ߲ ϙΠϯτ 1. Ψεաఔͷ༧ଌ ਪΧʔωϧؔΛ༻͍ͨطͷσ ʔλͱͷྨࣅܭࢉ͔ΒͰ͖Δ 2. Ψεաఔճؼͷܭࢉ
۩ମతͳ࣮Ͱٯߦྻͷܭࢉ͕ܭࢉ ͷେΛΊΔ 3. Ψεճؼաఔͷཁૉදݱ αϙʔτϕΫτϧϚγϯχϡʔϥϧ ωοτϫʔΫͱͷؔ࿈͕ࣔࠦ͞ΕΔ
༨ஊ Firebase • Firebase ͷυΩϡϝϯτʹʮߴͳ ϕΠζ౷ܭʯΛ༻͍ͯͱ͋Γ·͢Ͷ • Optimize1 Ͱ͍ͬͯΔΈ͍ͨͰ͢ Ͷ
• ࣄલʹ Beta(0, 0) Λ༻͍͍ͯ Δͷͼͬ͘Γ͠·ͨ͠ 1 Google Analytics Λ༻͍ͨ Web αΠτͷ A/B ςετ༻αʔϏε
࣍ 1.ϕΠζਪʹΑΔػցֶशೖ 2.Ψεաఔ֓ཁ 3.ΨεաఔճؼϞσϧ 4.ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ <- 5.ΨεաఔճؼͷҰൠԽ
ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ ߲ ༰ 1. ϋΠύʔύϥϝʔλͷ࠷దԽ Ψεաఔʹ͓͚Δޯ߱Լ๏ 2. ϋΠύʔύϥϝʔλͱہॴղ େҬղͱہॴղ 3.
Χʔωϧͷબ ΧʔωϧͷΈ߹Θͤํ
ϋΠύʔύϥϝʔλͷ࠷దԽ • Ψεաఔͷ࣮ʹ͓͍ͯɺֶशաఔͰάϥϜߦྻͷܭࢉ݁ ՌΛهԱ͢Δ͚ͩͩͬͨ • ҰํɺΧʔωϧؔʹϋΠύʔύϥϝʔλΛ࣋ͭͷ͕ଟ͍ • e.g. RBF Χʔωϧ
• ͜ΕΒͷύϥϝʔλʹ͍ͭͯɺσʔλ͔Β࠷దԽͰ͖ͳ͍͔ݕ ౼͢Δ
࠷దԽͷํ 1.σʔλΛਖ਼نԽ͢Δ2 2.࠷దԽͷରΛର ͱ͢Δ 3.ରͷޯΛܭࢉ͢Δ • ͜ͷࡍʹάϥϜߦྻΛύϥϝʔλͰ ඍ͢Δඞཁ͕͋Δ 4.ޯ߱Լ๏ʹجͮ͘ԿΒ͔ͷΞϧΰϦ ζϜΛ༻͍ͯ࠷దԽ͢Δ
2 ऍ 23 ΑΓɺ͜͜ͰฏۉΛ 0 ࢄΛ 1 ʹ͍ͯ͠Δ
ϋΠύʔύϥϝʔλͱہॴղ • େҬղͰͳ͘ہॴղʹؕΔ߹͕͋ Δͷʹҙ • ͜ΕۙܭࢉʹҰൠͷੑ࣭ • ϋΠύʔύϥϝʔλͷ࣍ݩ͕ߴ͍߹ MCMC3 ͳͲΛͬͯܭࢉ͢Δͱྑ͍ͱ
ओு͍ͯ͠Δ 3 ͜͜Ͱݴ͏ MCMC Metropolis–Hastings ͰཚΛੜͯ͠ظΛܭ ࢉ͢Δͱ͍͏ҙຯͰͳ͘ɺͦΕΛϋΠύʔύϥϝʔλʔ୳ࡧʹ͏ͱ͍͏ҙຯ (ޮΑ͘ϥϯμϜαʔνΛΔΠϝʔδ) cf. ऍ 26
Χʔωϧͷબ • ΧʔωϧͷબΛߦ͏͜ͱͰɺ֎෦͔ ΒࣝΛೖͰ͖Δ • RBF Χʔωϧ͚ͩΛ༻͍ͨਤ(a)Ͱ ɺσʔλͷ͋ΔՕॴͱ͔͘ɺӈ ͕ո͍͠ •
ઢܗΧʔωϧΛՃ͑ͨਤ(b)Ͱɺશମ తʹҰ؏͕ͨ͋͠Δͱ͍͏݁ՌΛ ಘΒΕ͍ͯΔ
ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ Recap ߲ ༰ 1. ϋΠύʔύϥϝʔλͷ࠷దԽ ޯ߱Լ๏Λ༻͍ͨ࠷దԽ͕Ͱ͖Δ(Χ ʔωϧʹΑΔ) 2. ϋΠύʔύϥϝʔλͱہॴղ
େҬղʹ౸ୡ͢Δอূͳ͍ͷͰҙ ͢Δ 3. Χʔωϧͷબ RBF ΧʔωϧҎ֎ͷΧʔωϧซ༻͢ Δͱྑ͘ͳΔ߹͕͋Δ
༨ஊ • ΨεաఔͷΧϧϚϯϑΟϧλͱࣅ ͍ͯΔ • ܚԠେֶͷΧϧϚϯϑΟϧλͷߨٛ4͕ ໘ന͔ͬͨ • ಉ࣌ʹ͏ํ๏ఏএ͞Ε͍ͯΔ༷ࢠ5 (ະಡ)
5 J. Ko and D. Fox: GP-BayesFilters: Bayesian filtering using Gaussian process prediction and observation models, Autonomous Robots, 27-1, 75/90 (2009) 4 ܚጯେֶߨٛ Ԡ༻֬ ୈेࡾճɹϕΠζͷํ๏ ΧϧϚϯϑΟϧλ̍ https://www.youtube.com/watch?v=P85JCE3tZWY
࣍ 1.ϕΠζਪʹΑΔػցֶशೖ 2.Ψεաఔ֓ཁ 3.ΨεաఔճؼϞσϧ 4.ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ 5.ΨεաఔճؼͷҰൠԽ <-
ΨεաఔճؼͷҰൠԽ ༰ ߲ 1. ϩόετͳΨεաఔճؼ ΨεաఔͰίʔγʔΛ༻͍Δ 2. ΨεաఔࣝผϞσϧ ΨεաఔΛྨʹద༻͢Δ 3.
ϙΞιϯճؼϞσϧ ΨεաఔΛΠϕϯτͷൃੜճͷ༧ଌ ʹద༻͢Δ ίϥϜ χϡʔϥϧωοτϫʔΫͱΨε աఔ χϡʔϥϧωοτϫʔΫΨεաఔ
֓ཁ • ؍ଌϞσϧͱͯ͠ΨεΛఆ͍͕ͯͨ͠ɺੈͷதͦ͏Ͱ ͳ͍͜ͱଟ͍ (e.g. Ի୯ޠͷੜ֬) • Ψεաఔʹ͓͚Δೖྗ ͔Β؍ଌ ͕ੜ͞Ε
Δ֬ ʹਖ਼نҎ֎ͷ֬Λ༻͍Δ͜ͱՄೳ • ͕ղੳతʹܭࢉͰ͖ͳ͍ͷͰɺMCMC ม ϕΠζͱ͍ͬͨۙࣅਪͰࣄޙΛٻΊΔ
1. ϩόετͳΨεաఔճؼ • ͷ͍Λ༻͍Δ͜ͱͰϩόετ ͳϞσϧ͕Ͱ͖Δ • Cauchy (t )
Λ༻͍Δ • ӈਤͰ֎ΕʹϩόετͳϞσϧ͕ Ͱ͖͍ͯΔ • ࣄޙղੳతʹٻΊΒΕͳ͍ͷͰ MCMC ͳͲͰۙࣅతʹٻΊΔ
2. ΨεաఔࣝผϞσϧ • ؍ଌ ͕ 2 ͷͱ͖ ͱ֬Λܭࢉ͍ͨ͠ • ͱͯ͠γάϞΠυؔΛ༻͍Δ
• ϓϩϏοτؔ (ਖ਼نͷྦྷੵີ ؔ) ΛΑۙ͘ࣅ͢Δ • ਪఆෳࡶͳͷͰ୯ʹྨΛߦ͍͍ͨ ߹ʹϝϦοτͳ͍ • ଞͷ֬աఔͱͷΈ߹ΘͤΛߟ͑Δ ߹ʹ͓ͬͯ͘ͱྑ͍
3. ϙΞιϯճؼϞσϧ • ؍ଌ ͕ࣗવͷͱ͖ʹΨεաఔ Λ༻͍ͨճؼΛߦ͍͍ͨ • ύϥϝʔλʔ ͱೖྗ ͷؒʹ
ΛԾఆ͢Δ • • ࣄޙΓෳࡶ
χϡʔϥϧωοτϫʔΫͱΨεաఔ ཁ • ॏΈͷॳظʹখ͞ͳཚΛ༻͍Δɺͱ͍͏ͷҰൠత • ʮଟͷॏΈΛ͔͚߹Θͤͯ͢ʯͱ͍͏ͷɺظΛͱΔ ૢ࡞ͱΈͳͤɺ݁Ռத৺ۃݶఆཧ͔ΒΨεʹۙͮ͘ • ωοτϫʔΫʹΑͬͯΧʔωϧ͕ؔղੳతʹٻΊΒΕΔ •
࣮ࡍɺਂֶशΨεաఔͱΈͳͤΔ24 24 Deep Neural Networks as Gaussian Processes. 2017. https://arxiv.org/abs/1711.00165.
ΨεաఔճؼͷҰൠԽ Recap ༰ ߲ 1. ϩόετͳΨεաఔճؼ ίʔγʔΛ༻͍Δͱ֎Εʹڧ͘ͳ Δ 2. ΨεաఔࣝผϞσϧ
ϩδεςΟοΫճؼΛΨεաఔʹద༻ Ͱ͖Δ 3. ϙΞιϯճؼϞσϧ ϙΞιϯճؼΛΨεաఔʹద༻Ͱ͖Δ χϡʔϥϧωοτϫʔΫͱΨεաఔ χϡʔϥϧωοτϫʔΫΨεաఔ
Recap ֓ཁ ϙΠϯτ ϕΠζਪʹΑΔػցֶशೖ ϕΠζਪʹ͓͚Δֶशͱਪ Ψεաఔͷఆٛ ఆٛͱΧʔωϧτϦοΫ ΨεաఔճؼϞσϧ Ψεաఔʹ͓͚Δਪํ๏ ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ
Ψεաఔʹ͓͚Δֶशํ๏ ΨεաఔճؼͷҰൠԽ ਖ਼نҎ֎ΛԾఆͨ͠Ψεաఔ