Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ガウス過程と機械学習 3章後半
Search
Asei Sugiyama
August 18, 2019
Technology
0
5.9k
ガウス過程と機械学習 3章後半
「ガウス過程と機械学習」輪読会(リターンズ) #3 の発表資料です
https://reading-circle-beginners.connpass.com/event/142115/
Asei Sugiyama
August 18, 2019
Tweet
Share
More Decks by Asei Sugiyama
See All by Asei Sugiyama
生成AIの活用パターンと継続的評価
asei
12
1.7k
最近の Citadel AI の取り組みのご紹介 (Nov, 2024)
asei
2
31
仕事で取り組む 生成 AI 時代の対話の品質評価
asei
2
37
MLOps の処方箋ができるまで
asei
3
440
LLM を現場で評価する
asei
5
900
生成 AI の評価方法
asei
8
1.9k
対話品質の評価に向き合う
asei
4
400
Kubeflow Pipelines v2 で変わる機械学習パイプライン開発
asei
6
1.2k
遊戯王 AI は次世代のグランドチャレンジになりうるか
asei
1
370
Other Decks in Technology
See All in Technology
リンクアンドモチベーション ソフトウェアエンジニア向け紹介資料 / Introduction to Link and Motivation for Software Engineers
lmi
4
290k
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
5
49k
「 SharePoint 難しい」ってよく聞くけど、そんなに言うなら8歳の息子に試してもらった
taichinakamura
1
620
APIテスト自動化の勘所
yokawasa
7
4.2k
「最高のチューニング」をしないために / hack@delta 24.10
fujiwara3
21
3.4k
2024-10-30-reInventStandby_StudyGroup_Intro
shinichirokawano
1
630
CyberAgent 生成AI Deep Dive with Amazon Web Services / genai-aws
cyberagentdevelopers
PRO
1
480
カメラを用いた店内計測におけるオプトインの仕組みの実現 / ai-optin-camera
cyberagentdevelopers
PRO
1
120
ガバメントクラウド先行事業中間報告を読み解く
sugiim
1
1.3k
ユーザーの購買行動モデリングとその分析 / dsc-purchase-analysis
cyberagentdevelopers
PRO
2
100
Autify Company Deck
autifyhq
1
39k
ABEMA のコンテンツ制作を最適化!生成 AI x クラウド映像編集システム / abema-ai-editor
cyberagentdevelopers
PRO
1
180
Featured
See All Featured
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
Why You Should Never Use an ORM
jnunemaker
PRO
53
9k
Bash Introduction
62gerente
608
210k
The Pragmatic Product Professional
lauravandoore
31
6.3k
5 minutes of I Can Smell Your CMS
philhawksworth
202
19k
Building Adaptive Systems
keathley
38
2.2k
Optimizing for Happiness
mojombo
376
69k
GraphQLの誤解/rethinking-graphql
sonatard
66
9.9k
Art, The Web, and Tiny UX
lynnandtonic
296
20k
No one is an island. Learnings from fostering a developers community.
thoeni
19
3k
We Have a Design System, Now What?
morganepeng
50
7.2k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
328
21k
Transcript
Ψεաఔͱػցֶश 3.4 - 3.6
ࣗݾհ • ਿࢁ Ѩ • Software Engineer @Repro • ػցֶशͱ͔౷ܭͱ͔։ൃͱ͔
• ػցֶशਤؑ ڞஶ
ํ & ग़య • Ψεաఔͱػցֶशͷ 3.4 - 3.6 Λத৺ʹѻ͍·͢ •
ग़యΛ໌ه͍ͯ͠ͳ͍ਤ͜ͷॻ੶ ͔ΒͷҾ༻Ͱ͢ • ͚ͩ͜͜Λ͢ͷ͍͠ͷͰɺ෮श ͔ΒೖΓ·͢ • ϕΠζਪʹΑΔػցֶशೖ • 3.1 - 3.3 • 3.4 - 3.6
༰ ֓ཁ ϙΠϯτ ϕΠζਪʹΑΔػցֶशೖ ϕΠζਪʹ͓͚Δֶशͱਪ Ψεաఔͷఆٛ ఆٛͱΧʔωϧτϦοΫ ΨεաఔճؼϞσϧ Ψεաఔʹ͓͚Δਪํ๏ ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ
Ψεաఔʹ͓͚Δֶशํ๏ ΨεաఔճؼͷҰൠԽ ਖ਼نҎ֎ΛԾఆͨ͠Ψεաఔ
࣍ 1.ϕΠζਪʹΑΔػցֶशೖ <- 2.Ψεաఔ֓ཁ 3.ΨεաఔճؼϞσϧ 4.ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ 5.ΨεաఔճؼͷҰൠԽ
ϕΠζਪʹΑΔػցֶशೖ • ஶऀ : ਢࢁರࢤ (@sammy_suyama) • ଞʹʮϕΠζਂֶशʯ • ϕΠζਪͷجૅʹ͍ͭͯͷຊ
• ࣍ͷ༰Λ෮श͢Δ 1.ϕΠζਪ 2.MCMC (ΪϒεαϯϓϦϯά) 3.ઢܗճؼ 4.ϩδεςΟοΫճؼ
ϕΠζਪ ܇࿅σʔλͷू߹Λ ɺϞσϧͷύϥϝʔλʔΛ ɺະ؍ଌͷ σʔλΛ ͱͯ͠ • Ϟσϧ : •
ֶश : • ਪ :
MCMC (ΪϒεαϯϓϦϯά) ͋Δ֬ ͔Βαϯϓϧ Λಘ͍ͨ߹ɺ࣍ͷΑ͏ʹ͖͔݅֬Βஞ࣍αϯϓϦϯά ͢Δ͜ͱͰɺۙࣅతʹͱͷʹै͏αϯϓϧྻΛಘΒΕΔɻ
ઢܗճؼ • ೖྗΛ ग़ྗΛ ॏΈΛ , ϊΠζΛ ͱ͠ ͯɺઢܗճؼ ͱఆࣜԽͰ͖Δ
• ϊΠζʹ͍ͭͯ ΛԾఆ͢Δͱɺग़ྗ ͱਖ਼نʹै͏ • ॏΈʹ͍ͭͯ ΛԾఆ͢Δͱɺࣄޙ ͕ਖ਼نʹै͏ (ϕΠζਪͷҙຯͰֶशՄೳ)
ϩδεςΟοΫճؼ (1/3) ଟ࣍ݩϕΫτϧ ͕࣍ͷΑ͏ͳΧςΰϦʹैͬͯग़ྗ͞Ε Δͷͱ͢Δɻ ͜͜Ͱɺ ඇઢܗؔͰɺࠓճ Softmax ؔΛ༻͍Δɻ
ϩδεςΟοΫճؼ (2/3) • ֶशͷͨΊʹೖྗͱग़ྗͷσʔληοτ ͔Β ͷࣄޙΛܭࢉ • Softmax ͕ؔೖͬͯ͠·͍ͬͯΔͨΊʹࣄޙΛղੳత ʹܭࢉͰ͖ͳ͍ͷͰมਪΛߦ͍ɺۙࣅղΛܭࢉ
• ͱͯ͠ KL μΠόʔδΣ ϯε Λ࠷খԽ͢Δ (มਪ)
ϩδεςΟοΫճؼ (3/3) • ୈ 3 ߲ΛղੳతʹܭࢉͰ͖ͳ͍ͷͰޯ๏ͰۙࣅղΛٻΊΔ • ϞϯςΧϧϩ๏ʹ͓͍ͯɺ ͕ಘΒΕͨͷͩͱΈͳ͢ (
ΛαϯϓϦϯάͨ͠ͷͩͱߟ͑Δ) ࠶ύϥϝʔ λʔԽτϦοΫʹΑΓޯ͕ܭࢉͰ͖Δ
ϕΠζਪʹΑΔػցֶशೖ Recap ߲ ϙΠϯτ 1. ϕΠζਪ ֶशͰਪͰ֬Λߟ͑Δ 2. MCMC (ΪϒεαϯϓϦϯά)
ෳࡶͳΛۙࣅ͢Δख๏͕͋Δ 3. ઢܗճؼ ॏΈΛ֬มͩͱଊֶ͑ͯश͢Δ 4. ϩδεςΟοΫճؼ ޯ߱Լ๏ΛϕΠζͰ͑Δ
༨ஊ ϕΠζਂֶश • ୈ 1 ষ ͡Ίʹ • ୈ 2
ষ χϡʔϥϧωοτϫʔΫͷج ૅ • ୈ 3 ষ ϕΠζਪͷجૅ • ୈ 4 ষ ۙࣅϕΠζਪ • ୈ 5 ষ χϡʔϥϧωοτϫʔΫͷϕ Πζਪ • ୈ 6 ষ ਂੜϞσϧ • ୈ 7 ষ ਂֶशͱΨεաఔ
࣍ 1.ϕΠζਪʹΑΔػցֶशೖ 2.Ψεաఔ֓ཁ <- 3.ΨεաఔճؼϞσϧ 4.ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ 5.ΨεաఔճؼͷҰൠԽ
Ψεաఔ֓ཁ ߲ ϙΠϯτ 1. Ψεաఔͷఆٛ ฏۉͱڞࢄߦྻͰܾ·Δ 2. Χʔωϧؔͷಋೖ ΧʔωϧؔੵΛҰൠԽͨ͠ͷ 3.
ΧʔωϧؔͱάϥϜߦྻ άϥϜߦྻ͕Ψεաఔʹ͓͚Δڞࢄ ߦྻʹͳΔ 4. ؍ଌϊΠζͱΧʔωϧؔ ΧʔωϧؔʹΑΓΨεաఔͰ͞·͟ ·ͳϞσϧΛදݱͰ͖Δ
Ψεաఔͷఆٛ • Wikipedia (English) ͷఆٛ࣍ ͷ௨Γ ֬աఔ ͕࣍ͷ݅Λຬͨ ͢ͱ͖ɺΨεաఔͱݺͿɻ ఴࣈू߹
ͷҙͷ༗ݶ෦ू߹ ʹର͠ɺ ͕ଟ࣍ݩਖ਼ن ʹै͏ɻ
Χʔωϧؔͷಋೖ ؔ ͕࣍Λຬͨ͢ͱ͖ɺਖ਼ఆΧʔωϧͱݴ͏ ҙͷ ʹର͠ 1. (ରশੑ) 2. (ਖ਼ఆੑ) ੵͷҰൠԽͰ͋ΓɺσʔλؒͷྨࣅΛද͢
(ཧ༝͋ͱͰ)
ΧʔωϧؔͱάϥϜߦྻ ҙͷσʔλྻ ͱΧʔωϧؔ ʹର͠ɺߦྻ ͷ Λ࣍Ͱఆٛͨ͠ͷΛάϥϜߦྻ·ͨ ΧʔωϧߦྻͱݺͿ • ΧʔωϧؔΛ༻͍ͨڞࢄߦྻͷҰൠԽ •
Χʔωϧؔͷਖ਼ఆੑάϥϜߦྻͷݻ༗͕શͯ 0 Ҏ্ Ͱ͋Δ͜ͱʹಉ͡
ิ Mercer ͷఆཧ • ਖ਼ఆΧʔωϧ ʹରͯ͠ɺ࣍Λຬ ͨ͢Α͏ͳಛۭؒͷࣹӨ ͕ ଘࡏ͢Δɺͱ͍͏ఆཧ •
ࣹӨ͢Δಛۭؒͷ࣍ݩҰൠʹ༗ ݶͰͳ͍ • ͭ·ΓຊʹӈͷΑ͏ʹͳ͍ͬͯΔͱ ࢥͬͯྑ͍ (ػցֶशਤ͔ؑΒൈਮ)
Ψεաఔͷఆٛ (Χʔωϧ๏)
؍ଌϊΠζͱΧʔωϧؔ • ઢܗճؼ ʹ͓͍ͯɺ ͱ ͓͖ɺ ͱ ΛԾఆ͢Δ • ͜ͷͱ͖
Ͱ ( ͱͨ͠) • ͕ਖ਼ఆͰ͋Δ͜ͱͱɺΧʔωϧؔʹดͯ͡ ͍Δ͜ͱΛ༻͍Δͱ ͱ͍͏ ৽͍͠ΧʔωϧؔΛఆٛͨ͠ͱΈͳͤΔ
Ψεաఔ֓ཁ Recap ߲ ϙΠϯτ 1. Ψεաఔͷఆٛ ฏۉͱڞࢄߦྻͰܾ·Δ 2. Χʔωϧؔͷಋೖ ΧʔωϧؔੵΛҰൠԽͨ͠ͷ
3. ΧʔωϧؔͱάϥϜߦྻ άϥϜߦྻ͕Ψεաఔʹ͓͚Δڞࢄ ߦྻʹͳΔ 4. ؍ଌϊΠζͱΧʔωϧؔ ΧʔωϧؔʹΑΓΨεաఔͰ͞·͟ ·ͳϞσϧΛදݱͰ͖Δ
࣍ 1.ϕΠζਪʹΑΔػցֶशೖ 2.Ψεաఔ֓ཁ 3.ΨεաఔճؼϞσϧ <- 4.ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ 5.ΨεաఔճؼͷҰൠԽ
ΨεաఔճؼϞσϧ ߲ ༰ 1. Ψεաఔͷ༧ଌ ΨεաఔͰͷਪํ๏ 2. Ψεաఔճؼͷܭࢉ ࣮ํ๏ͱܭࢉྔ 3.
Ψεճؼաఔͷཁૉදݱ ଞͷख๏ͱͷؔ࿈
Ψεաఔͷ༧ଌ • ֶशσʔλ Λͬͯະσʔλ ʹର͢Δग़ྗ Λ༧ଌ͍ͨ͠ ( ͱ͢Δ) • ͱ͍͏͕ؔ͋Γ
ͱ͢Δ • ͷै͏άϥϜߦྻ Λ༻͍Δͱɺ (ΨεաఔͷఆٛΑΓ) • ະσʔλͰͲ͏͖͔͢Λߟ͍͑ͨ
ະσʔλʹର͢Δਪ (1/2) • ະͷೖྗ ʹର͢Δग़ྗ Λؚ ΊͯάϥϜߦྻΛܭࢉͯ͠ਪ͢Δ • ະσʔλΛՃ͑ͨग़ྗ ͱɺະσʔλΛ
Ճ͑ͨάϥϜߦྻ Λܭࢉ͢Δ • ະσʔλΛؚΊͨग़ྗͷ (ط σʔλͱະσʔλͷಉ࣌֬) ͕ਪͰ͖Δ
ະσʔλʹର͢Δਪ (2/2) • ಉ࣌ ͔Β͖݅֬ ΛٻΊΔ • ଟ࣍ݩਖ਼نͷҰ෦͕༩͑ΒΕͨͱ ͖ͷ݁ՌΛ༻͍Δ
• ະσʔλ͕ෳ͋Δͱ͖ಉ༷
None
Ψεաఔճؼͷܭࢉ (1/2) • ֬ ͷύϥ ϝʔλͷܭࢉʹ͓͍ͯɺ ͷܭࢉ͕ඞཁ • ٯߦྻͷܭࢉͰϥϯΫ (͜͜Ͱσʔλྔ)
ʹରͯ͠ܭ ࢉྔ͕ ඞཁʹͳΔͨΊͳΜͱ͔ͯ͠ճආ͍ͨ͠ • ΨγΞϯΧʔωϧͰճආͰ͖Δ • ৄ͘͠ 5 ষͰ!
Ψεաఔճؼͷܭࢉ (2/2) • ۪ͳ࣮ͰؾʹͳΔՕॴΛݕ౼͢Δ • K[n, n'] ͷϝϞϦফඅྔ͕σʔλ ʹରͯ͠ •
ٯߦྻͷܭࢉྔ͕ߴ͍ ( ) • άϥϜߦྻͷܭࢉྔߴ͍ ( ) • train ʹ֘͢Δ෦͕ͳ͍ • άϥϜߦྻΛهԱ͢Δ͚ͩ • ޙ΄Ͳ࠶ݕ౼
Ψεճؼաఔͷཁૉදݱ (1/3) • ฏۉʹ͍ͭͯݕ౼͢Δ • ͱ͓͘ͱɺ
Ψεճؼաఔͷཁૉදݱ (2/3) • Λݕ౼͢Δ ( ݻఆͯ͠ߟ͑Δ) • ൪ͷσʔλͱະ σʔλͷྨࣅ
• ൪ͷσʔλͱͷ ൪ͷσʔ λͷؔ࿈߹͍ • ະσʔλ͕ ൪ͷطσʔλ ͱͲΕ͚ͩؔ࿈͢Δ͔ɺશମతͳฏۉ Λͱͬͨͷ
Ψεճؼաఔͷཁૉදݱ (3/3) • , ͱఆ ٛ͢Δͱɺ࣍ͷΑ͏ʹॻ͚Δ* • ͜ͷܭࢉάϥϑߏͰ͔͚Δ * ӈਤͱผͷఆٛ
ΨεաఔճؼϞσϧ Recap ߲ ϙΠϯτ 1. Ψεաఔͷ༧ଌ ਪΧʔωϧؔΛ༻͍ͨطͷσ ʔλͱͷྨࣅܭࢉ͔ΒͰ͖Δ 2. Ψεաఔճؼͷܭࢉ
۩ମతͳ࣮Ͱٯߦྻͷܭࢉ͕ܭࢉ ͷେΛΊΔ 3. Ψεճؼաఔͷཁૉදݱ αϙʔτϕΫτϧϚγϯχϡʔϥϧ ωοτϫʔΫͱͷؔ࿈͕ࣔࠦ͞ΕΔ
༨ஊ Firebase • Firebase ͷυΩϡϝϯτʹʮߴͳ ϕΠζ౷ܭʯΛ༻͍ͯͱ͋Γ·͢Ͷ • Optimize1 Ͱ͍ͬͯΔΈ͍ͨͰ͢ Ͷ
• ࣄલʹ Beta(0, 0) Λ༻͍͍ͯ Δͷͼͬ͘Γ͠·ͨ͠ 1 Google Analytics Λ༻͍ͨ Web αΠτͷ A/B ςετ༻αʔϏε
࣍ 1.ϕΠζਪʹΑΔػցֶशೖ 2.Ψεաఔ֓ཁ 3.ΨεաఔճؼϞσϧ 4.ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ <- 5.ΨεաఔճؼͷҰൠԽ
ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ ߲ ༰ 1. ϋΠύʔύϥϝʔλͷ࠷దԽ Ψεաఔʹ͓͚Δޯ߱Լ๏ 2. ϋΠύʔύϥϝʔλͱہॴղ େҬղͱہॴղ 3.
Χʔωϧͷબ ΧʔωϧͷΈ߹Θͤํ
ϋΠύʔύϥϝʔλͷ࠷దԽ • Ψεաఔͷ࣮ʹ͓͍ͯɺֶशաఔͰάϥϜߦྻͷܭࢉ݁ ՌΛهԱ͢Δ͚ͩͩͬͨ • ҰํɺΧʔωϧؔʹϋΠύʔύϥϝʔλΛ࣋ͭͷ͕ଟ͍ • e.g. RBF Χʔωϧ
• ͜ΕΒͷύϥϝʔλʹ͍ͭͯɺσʔλ͔Β࠷దԽͰ͖ͳ͍͔ݕ ౼͢Δ
࠷దԽͷํ 1.σʔλΛਖ਼نԽ͢Δ2 2.࠷దԽͷରΛର ͱ͢Δ 3.ରͷޯΛܭࢉ͢Δ • ͜ͷࡍʹάϥϜߦྻΛύϥϝʔλͰ ඍ͢Δඞཁ͕͋Δ 4.ޯ߱Լ๏ʹجͮ͘ԿΒ͔ͷΞϧΰϦ ζϜΛ༻͍ͯ࠷దԽ͢Δ
2 ऍ 23 ΑΓɺ͜͜ͰฏۉΛ 0 ࢄΛ 1 ʹ͍ͯ͠Δ
ϋΠύʔύϥϝʔλͱہॴղ • େҬղͰͳ͘ہॴղʹؕΔ߹͕͋ Δͷʹҙ • ͜ΕۙܭࢉʹҰൠͷੑ࣭ • ϋΠύʔύϥϝʔλͷ࣍ݩ͕ߴ͍߹ MCMC3 ͳͲΛͬͯܭࢉ͢Δͱྑ͍ͱ
ओு͍ͯ͠Δ 3 ͜͜Ͱݴ͏ MCMC Metropolis–Hastings ͰཚΛੜͯ͠ظΛܭ ࢉ͢Δͱ͍͏ҙຯͰͳ͘ɺͦΕΛϋΠύʔύϥϝʔλʔ୳ࡧʹ͏ͱ͍͏ҙຯ (ޮΑ͘ϥϯμϜαʔνΛΔΠϝʔδ) cf. ऍ 26
Χʔωϧͷબ • ΧʔωϧͷબΛߦ͏͜ͱͰɺ֎෦͔ ΒࣝΛೖͰ͖Δ • RBF Χʔωϧ͚ͩΛ༻͍ͨਤ(a)Ͱ ɺσʔλͷ͋ΔՕॴͱ͔͘ɺӈ ͕ո͍͠ •
ઢܗΧʔωϧΛՃ͑ͨਤ(b)Ͱɺશମ తʹҰ؏͕ͨ͋͠Δͱ͍͏݁ՌΛ ಘΒΕ͍ͯΔ
ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ Recap ߲ ༰ 1. ϋΠύʔύϥϝʔλͷ࠷దԽ ޯ߱Լ๏Λ༻͍ͨ࠷దԽ͕Ͱ͖Δ(Χ ʔωϧʹΑΔ) 2. ϋΠύʔύϥϝʔλͱہॴղ
େҬղʹ౸ୡ͢Δอূͳ͍ͷͰҙ ͢Δ 3. Χʔωϧͷબ RBF ΧʔωϧҎ֎ͷΧʔωϧซ༻͢ Δͱྑ͘ͳΔ߹͕͋Δ
༨ஊ • ΨεաఔͷΧϧϚϯϑΟϧλͱࣅ ͍ͯΔ • ܚԠେֶͷΧϧϚϯϑΟϧλͷߨٛ4͕ ໘ന͔ͬͨ • ಉ࣌ʹ͏ํ๏ఏএ͞Ε͍ͯΔ༷ࢠ5 (ະಡ)
5 J. Ko and D. Fox: GP-BayesFilters: Bayesian filtering using Gaussian process prediction and observation models, Autonomous Robots, 27-1, 75/90 (2009) 4 ܚጯେֶߨٛ Ԡ༻֬ ୈेࡾճɹϕΠζͷํ๏ ΧϧϚϯϑΟϧλ̍ https://www.youtube.com/watch?v=P85JCE3tZWY
࣍ 1.ϕΠζਪʹΑΔػցֶशೖ 2.Ψεաఔ֓ཁ 3.ΨεաఔճؼϞσϧ 4.ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ 5.ΨεաఔճؼͷҰൠԽ <-
ΨεաఔճؼͷҰൠԽ ༰ ߲ 1. ϩόετͳΨεաఔճؼ ΨεաఔͰίʔγʔΛ༻͍Δ 2. ΨεաఔࣝผϞσϧ ΨεաఔΛྨʹద༻͢Δ 3.
ϙΞιϯճؼϞσϧ ΨεաఔΛΠϕϯτͷൃੜճͷ༧ଌ ʹద༻͢Δ ίϥϜ χϡʔϥϧωοτϫʔΫͱΨε աఔ χϡʔϥϧωοτϫʔΫΨεաఔ
֓ཁ • ؍ଌϞσϧͱͯ͠ΨεΛఆ͍͕ͯͨ͠ɺੈͷதͦ͏Ͱ ͳ͍͜ͱଟ͍ (e.g. Ի୯ޠͷੜ֬) • Ψεաఔʹ͓͚Δೖྗ ͔Β؍ଌ ͕ੜ͞Ε
Δ֬ ʹਖ਼نҎ֎ͷ֬Λ༻͍Δ͜ͱՄೳ • ͕ղੳతʹܭࢉͰ͖ͳ͍ͷͰɺMCMC ม ϕΠζͱ͍ͬͨۙࣅਪͰࣄޙΛٻΊΔ
1. ϩόετͳΨεաఔճؼ • ͷ͍Λ༻͍Δ͜ͱͰϩόετ ͳϞσϧ͕Ͱ͖Δ • Cauchy (t )
Λ༻͍Δ • ӈਤͰ֎ΕʹϩόετͳϞσϧ͕ Ͱ͖͍ͯΔ • ࣄޙղੳతʹٻΊΒΕͳ͍ͷͰ MCMC ͳͲͰۙࣅతʹٻΊΔ
2. ΨεաఔࣝผϞσϧ • ؍ଌ ͕ 2 ͷͱ͖ ͱ֬Λܭࢉ͍ͨ͠ • ͱͯ͠γάϞΠυؔΛ༻͍Δ
• ϓϩϏοτؔ (ਖ਼نͷྦྷੵີ ؔ) ΛΑۙ͘ࣅ͢Δ • ਪఆෳࡶͳͷͰ୯ʹྨΛߦ͍͍ͨ ߹ʹϝϦοτͳ͍ • ଞͷ֬աఔͱͷΈ߹ΘͤΛߟ͑Δ ߹ʹ͓ͬͯ͘ͱྑ͍
3. ϙΞιϯճؼϞσϧ • ؍ଌ ͕ࣗવͷͱ͖ʹΨεաఔ Λ༻͍ͨճؼΛߦ͍͍ͨ • ύϥϝʔλʔ ͱೖྗ ͷؒʹ
ΛԾఆ͢Δ • • ࣄޙΓෳࡶ
χϡʔϥϧωοτϫʔΫͱΨεաఔ ཁ • ॏΈͷॳظʹখ͞ͳཚΛ༻͍Δɺͱ͍͏ͷҰൠత • ʮଟͷॏΈΛ͔͚߹Θͤͯ͢ʯͱ͍͏ͷɺظΛͱΔ ૢ࡞ͱΈͳͤɺ݁Ռத৺ۃݶఆཧ͔ΒΨεʹۙͮ͘ • ωοτϫʔΫʹΑͬͯΧʔωϧ͕ؔղੳతʹٻΊΒΕΔ •
࣮ࡍɺਂֶशΨεաఔͱΈͳͤΔ24 24 Deep Neural Networks as Gaussian Processes. 2017. https://arxiv.org/abs/1711.00165.
ΨεաఔճؼͷҰൠԽ Recap ༰ ߲ 1. ϩόετͳΨεաఔճؼ ίʔγʔΛ༻͍Δͱ֎Εʹڧ͘ͳ Δ 2. ΨεաఔࣝผϞσϧ
ϩδεςΟοΫճؼΛΨεաఔʹద༻ Ͱ͖Δ 3. ϙΞιϯճؼϞσϧ ϙΞιϯճؼΛΨεաఔʹద༻Ͱ͖Δ χϡʔϥϧωοτϫʔΫͱΨεաఔ χϡʔϥϧωοτϫʔΫΨεաఔ
Recap ֓ཁ ϙΠϯτ ϕΠζਪʹΑΔػցֶशೖ ϕΠζਪʹ͓͚Δֶशͱਪ Ψεաఔͷఆٛ ఆٛͱΧʔωϧτϦοΫ ΨεաఔճؼϞσϧ Ψεաఔʹ͓͚Δਪํ๏ ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ
Ψεաఔʹ͓͚Δֶशํ๏ ΨεաఔճؼͷҰൠԽ ਖ਼نҎ֎ΛԾఆͨ͠Ψεաఔ