Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ガウス過程と機械学習 3章後半
Search
Asei Sugiyama
August 18, 2019
Technology
0
6.1k
ガウス過程と機械学習 3章後半
「ガウス過程と機械学習」輪読会(リターンズ) #3 の発表資料です
https://reading-circle-beginners.connpass.com/event/142115/
Asei Sugiyama
August 18, 2019
Tweet
Share
More Decks by Asei Sugiyama
See All by Asei Sugiyama
MLOps の現場から
asei
8
900
LLMOps: Eval-Centric を前提としたMLOps
asei
7
670
The Rise of LLMOps
asei
13
3k
生成AIの活用パターンと継続的評価
asei
15
2.6k
最近の Citadel AI の取り組みのご紹介 (Nov, 2024)
asei
2
130
仕事で取り組む 生成 AI 時代の対話の品質評価
asei
2
89
MLOps の処方箋ができるまで
asei
3
660
LLM を現場で評価する
asei
5
1k
生成 AI の評価方法
asei
8
2.4k
Other Decks in Technology
See All in Technology
Exadata Database Service on Cloud@Customer セキュリティ、ネットワーク、および管理について
oracle4engineer
PRO
2
1.6k
【Forkwell】「正しく」失敗できるチームを作る──現場のリーダーのための恐怖と不安を乗り越える技術 - FL#83 / A team that can fail correctly by forkwell
i35_267
2
120
“常に進化する”開発現場へ! SHIFTが語るアジャイルQAの未来/20250306 Yuma Murase
shift_evolve
0
110
エンジニアの健康管理術 / Engineer Health Management Techniques
y_sone
4
1.4k
AIエージェント時代のエンジニアになろう #jawsug #jawsdays2025 / 20250301 Agentic AI Engineering
yoshidashingo
9
4.2k
20250304_赤煉瓦倉庫_DeepSeek_Deep_Dive
hiouchiy
2
130
サイト信頼性エンジニアリングとAmazon Web Services / SRE and AWS
ymotongpoo
7
1.9k
データモデルYANGの処理系を再発明した話
tjmtrhs
0
330
AWSではじめる Web APIテスト実践ガイド / A practical guide to testing Web APIs on AWS
yokawasa
8
790
エンジニアのキャリアパスと、 その中で自分が大切にしていること
noteinc
3
400
User Story Mapping + Inclusive Team
kawaguti
PRO
3
490
Oracle Database Technology Night #87-1 : Exadata Database Service on Exascale Infrastructure(ExaDB-XS)サービス詳細
oracle4engineer
PRO
1
220
Featured
See All Featured
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Building Adaptive Systems
keathley
40
2.4k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.4k
Writing Fast Ruby
sferik
628
61k
Making the Leap to Tech Lead
cromwellryan
133
9.1k
It's Worth the Effort
3n
184
28k
Unsuck your backbone
ammeep
669
57k
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.5k
We Have a Design System, Now What?
morganepeng
51
7.4k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Building a Scalable Design System with Sketch
lauravandoore
461
33k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Transcript
Ψεաఔͱػցֶश 3.4 - 3.6
ࣗݾհ • ਿࢁ Ѩ • Software Engineer @Repro • ػցֶशͱ͔౷ܭͱ͔։ൃͱ͔
• ػցֶशਤؑ ڞஶ
ํ & ग़య • Ψεաఔͱػցֶशͷ 3.4 - 3.6 Λத৺ʹѻ͍·͢ •
ग़యΛ໌ه͍ͯ͠ͳ͍ਤ͜ͷॻ੶ ͔ΒͷҾ༻Ͱ͢ • ͚ͩ͜͜Λ͢ͷ͍͠ͷͰɺ෮श ͔ΒೖΓ·͢ • ϕΠζਪʹΑΔػցֶशೖ • 3.1 - 3.3 • 3.4 - 3.6
༰ ֓ཁ ϙΠϯτ ϕΠζਪʹΑΔػցֶशೖ ϕΠζਪʹ͓͚Δֶशͱਪ Ψεաఔͷఆٛ ఆٛͱΧʔωϧτϦοΫ ΨεաఔճؼϞσϧ Ψεաఔʹ͓͚Δਪํ๏ ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ
Ψεաఔʹ͓͚Δֶशํ๏ ΨεաఔճؼͷҰൠԽ ਖ਼نҎ֎ΛԾఆͨ͠Ψεաఔ
࣍ 1.ϕΠζਪʹΑΔػցֶशೖ <- 2.Ψεաఔ֓ཁ 3.ΨεաఔճؼϞσϧ 4.ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ 5.ΨεաఔճؼͷҰൠԽ
ϕΠζਪʹΑΔػցֶशೖ • ஶऀ : ਢࢁರࢤ (@sammy_suyama) • ଞʹʮϕΠζਂֶशʯ • ϕΠζਪͷجૅʹ͍ͭͯͷຊ
• ࣍ͷ༰Λ෮श͢Δ 1.ϕΠζਪ 2.MCMC (ΪϒεαϯϓϦϯά) 3.ઢܗճؼ 4.ϩδεςΟοΫճؼ
ϕΠζਪ ܇࿅σʔλͷू߹Λ ɺϞσϧͷύϥϝʔλʔΛ ɺະ؍ଌͷ σʔλΛ ͱͯ͠ • Ϟσϧ : •
ֶश : • ਪ :
MCMC (ΪϒεαϯϓϦϯά) ͋Δ֬ ͔Βαϯϓϧ Λಘ͍ͨ߹ɺ࣍ͷΑ͏ʹ͖͔݅֬Βஞ࣍αϯϓϦϯά ͢Δ͜ͱͰɺۙࣅతʹͱͷʹै͏αϯϓϧྻΛಘΒΕΔɻ
ઢܗճؼ • ೖྗΛ ग़ྗΛ ॏΈΛ , ϊΠζΛ ͱ͠ ͯɺઢܗճؼ ͱఆࣜԽͰ͖Δ
• ϊΠζʹ͍ͭͯ ΛԾఆ͢Δͱɺग़ྗ ͱਖ਼نʹै͏ • ॏΈʹ͍ͭͯ ΛԾఆ͢Δͱɺࣄޙ ͕ਖ਼نʹै͏ (ϕΠζਪͷҙຯͰֶशՄೳ)
ϩδεςΟοΫճؼ (1/3) ଟ࣍ݩϕΫτϧ ͕࣍ͷΑ͏ͳΧςΰϦʹैͬͯग़ྗ͞Ε Δͷͱ͢Δɻ ͜͜Ͱɺ ඇઢܗؔͰɺࠓճ Softmax ؔΛ༻͍Δɻ
ϩδεςΟοΫճؼ (2/3) • ֶशͷͨΊʹೖྗͱग़ྗͷσʔληοτ ͔Β ͷࣄޙΛܭࢉ • Softmax ͕ؔೖͬͯ͠·͍ͬͯΔͨΊʹࣄޙΛղੳత ʹܭࢉͰ͖ͳ͍ͷͰมਪΛߦ͍ɺۙࣅղΛܭࢉ
• ͱͯ͠ KL μΠόʔδΣ ϯε Λ࠷খԽ͢Δ (มਪ)
ϩδεςΟοΫճؼ (3/3) • ୈ 3 ߲ΛղੳతʹܭࢉͰ͖ͳ͍ͷͰޯ๏ͰۙࣅղΛٻΊΔ • ϞϯςΧϧϩ๏ʹ͓͍ͯɺ ͕ಘΒΕͨͷͩͱΈͳ͢ (
ΛαϯϓϦϯάͨ͠ͷͩͱߟ͑Δ) ࠶ύϥϝʔ λʔԽτϦοΫʹΑΓޯ͕ܭࢉͰ͖Δ
ϕΠζਪʹΑΔػցֶशೖ Recap ߲ ϙΠϯτ 1. ϕΠζਪ ֶशͰਪͰ֬Λߟ͑Δ 2. MCMC (ΪϒεαϯϓϦϯά)
ෳࡶͳΛۙࣅ͢Δख๏͕͋Δ 3. ઢܗճؼ ॏΈΛ֬มͩͱଊֶ͑ͯश͢Δ 4. ϩδεςΟοΫճؼ ޯ߱Լ๏ΛϕΠζͰ͑Δ
༨ஊ ϕΠζਂֶश • ୈ 1 ষ ͡Ίʹ • ୈ 2
ষ χϡʔϥϧωοτϫʔΫͷج ૅ • ୈ 3 ষ ϕΠζਪͷجૅ • ୈ 4 ষ ۙࣅϕΠζਪ • ୈ 5 ষ χϡʔϥϧωοτϫʔΫͷϕ Πζਪ • ୈ 6 ষ ਂੜϞσϧ • ୈ 7 ষ ਂֶशͱΨεաఔ
࣍ 1.ϕΠζਪʹΑΔػցֶशೖ 2.Ψεաఔ֓ཁ <- 3.ΨεաఔճؼϞσϧ 4.ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ 5.ΨεաఔճؼͷҰൠԽ
Ψεաఔ֓ཁ ߲ ϙΠϯτ 1. Ψεաఔͷఆٛ ฏۉͱڞࢄߦྻͰܾ·Δ 2. Χʔωϧؔͷಋೖ ΧʔωϧؔੵΛҰൠԽͨ͠ͷ 3.
ΧʔωϧؔͱάϥϜߦྻ άϥϜߦྻ͕Ψεաఔʹ͓͚Δڞࢄ ߦྻʹͳΔ 4. ؍ଌϊΠζͱΧʔωϧؔ ΧʔωϧؔʹΑΓΨεաఔͰ͞·͟ ·ͳϞσϧΛදݱͰ͖Δ
Ψεաఔͷఆٛ • Wikipedia (English) ͷఆٛ࣍ ͷ௨Γ ֬աఔ ͕࣍ͷ݅Λຬͨ ͢ͱ͖ɺΨεաఔͱݺͿɻ ఴࣈू߹
ͷҙͷ༗ݶ෦ू߹ ʹର͠ɺ ͕ଟ࣍ݩਖ਼ن ʹै͏ɻ
Χʔωϧؔͷಋೖ ؔ ͕࣍Λຬͨ͢ͱ͖ɺਖ਼ఆΧʔωϧͱݴ͏ ҙͷ ʹର͠ 1. (ରশੑ) 2. (ਖ਼ఆੑ) ੵͷҰൠԽͰ͋ΓɺσʔλؒͷྨࣅΛද͢
(ཧ༝͋ͱͰ)
ΧʔωϧؔͱάϥϜߦྻ ҙͷσʔλྻ ͱΧʔωϧؔ ʹର͠ɺߦྻ ͷ Λ࣍Ͱఆٛͨ͠ͷΛάϥϜߦྻ·ͨ ΧʔωϧߦྻͱݺͿ • ΧʔωϧؔΛ༻͍ͨڞࢄߦྻͷҰൠԽ •
Χʔωϧؔͷਖ਼ఆੑάϥϜߦྻͷݻ༗͕શͯ 0 Ҏ্ Ͱ͋Δ͜ͱʹಉ͡
ิ Mercer ͷఆཧ • ਖ਼ఆΧʔωϧ ʹରͯ͠ɺ࣍Λຬ ͨ͢Α͏ͳಛۭؒͷࣹӨ ͕ ଘࡏ͢Δɺͱ͍͏ఆཧ •
ࣹӨ͢Δಛۭؒͷ࣍ݩҰൠʹ༗ ݶͰͳ͍ • ͭ·ΓຊʹӈͷΑ͏ʹͳ͍ͬͯΔͱ ࢥͬͯྑ͍ (ػցֶशਤ͔ؑΒൈਮ)
Ψεաఔͷఆٛ (Χʔωϧ๏)
؍ଌϊΠζͱΧʔωϧؔ • ઢܗճؼ ʹ͓͍ͯɺ ͱ ͓͖ɺ ͱ ΛԾఆ͢Δ • ͜ͷͱ͖
Ͱ ( ͱͨ͠) • ͕ਖ਼ఆͰ͋Δ͜ͱͱɺΧʔωϧؔʹดͯ͡ ͍Δ͜ͱΛ༻͍Δͱ ͱ͍͏ ৽͍͠ΧʔωϧؔΛఆٛͨ͠ͱΈͳͤΔ
Ψεաఔ֓ཁ Recap ߲ ϙΠϯτ 1. Ψεաఔͷఆٛ ฏۉͱڞࢄߦྻͰܾ·Δ 2. Χʔωϧؔͷಋೖ ΧʔωϧؔੵΛҰൠԽͨ͠ͷ
3. ΧʔωϧؔͱάϥϜߦྻ άϥϜߦྻ͕Ψεաఔʹ͓͚Δڞࢄ ߦྻʹͳΔ 4. ؍ଌϊΠζͱΧʔωϧؔ ΧʔωϧؔʹΑΓΨεաఔͰ͞·͟ ·ͳϞσϧΛදݱͰ͖Δ
࣍ 1.ϕΠζਪʹΑΔػցֶशೖ 2.Ψεաఔ֓ཁ 3.ΨεաఔճؼϞσϧ <- 4.ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ 5.ΨεաఔճؼͷҰൠԽ
ΨεաఔճؼϞσϧ ߲ ༰ 1. Ψεաఔͷ༧ଌ ΨεաఔͰͷਪํ๏ 2. Ψεաఔճؼͷܭࢉ ࣮ํ๏ͱܭࢉྔ 3.
Ψεճؼաఔͷཁૉදݱ ଞͷख๏ͱͷؔ࿈
Ψεաఔͷ༧ଌ • ֶशσʔλ Λͬͯະσʔλ ʹର͢Δग़ྗ Λ༧ଌ͍ͨ͠ ( ͱ͢Δ) • ͱ͍͏͕ؔ͋Γ
ͱ͢Δ • ͷै͏άϥϜߦྻ Λ༻͍Δͱɺ (ΨεաఔͷఆٛΑΓ) • ະσʔλͰͲ͏͖͔͢Λߟ͍͑ͨ
ະσʔλʹର͢Δਪ (1/2) • ະͷೖྗ ʹର͢Δग़ྗ Λؚ ΊͯάϥϜߦྻΛܭࢉͯ͠ਪ͢Δ • ະσʔλΛՃ͑ͨग़ྗ ͱɺະσʔλΛ
Ճ͑ͨάϥϜߦྻ Λܭࢉ͢Δ • ະσʔλΛؚΊͨग़ྗͷ (ط σʔλͱະσʔλͷಉ࣌֬) ͕ਪͰ͖Δ
ະσʔλʹର͢Δਪ (2/2) • ಉ࣌ ͔Β͖݅֬ ΛٻΊΔ • ଟ࣍ݩਖ਼نͷҰ෦͕༩͑ΒΕͨͱ ͖ͷ݁ՌΛ༻͍Δ
• ະσʔλ͕ෳ͋Δͱ͖ಉ༷
None
Ψεաఔճؼͷܭࢉ (1/2) • ֬ ͷύϥ ϝʔλͷܭࢉʹ͓͍ͯɺ ͷܭࢉ͕ඞཁ • ٯߦྻͷܭࢉͰϥϯΫ (͜͜Ͱσʔλྔ)
ʹରͯ͠ܭ ࢉྔ͕ ඞཁʹͳΔͨΊͳΜͱ͔ͯ͠ճආ͍ͨ͠ • ΨγΞϯΧʔωϧͰճආͰ͖Δ • ৄ͘͠ 5 ষͰ!
Ψεաఔճؼͷܭࢉ (2/2) • ۪ͳ࣮ͰؾʹͳΔՕॴΛݕ౼͢Δ • K[n, n'] ͷϝϞϦফඅྔ͕σʔλ ʹରͯ͠ •
ٯߦྻͷܭࢉྔ͕ߴ͍ ( ) • άϥϜߦྻͷܭࢉྔߴ͍ ( ) • train ʹ֘͢Δ෦͕ͳ͍ • άϥϜߦྻΛهԱ͢Δ͚ͩ • ޙ΄Ͳ࠶ݕ౼
Ψεճؼաఔͷཁૉදݱ (1/3) • ฏۉʹ͍ͭͯݕ౼͢Δ • ͱ͓͘ͱɺ
Ψεճؼաఔͷཁૉදݱ (2/3) • Λݕ౼͢Δ ( ݻఆͯ͠ߟ͑Δ) • ൪ͷσʔλͱະ σʔλͷྨࣅ
• ൪ͷσʔλͱͷ ൪ͷσʔ λͷؔ࿈߹͍ • ະσʔλ͕ ൪ͷطσʔλ ͱͲΕ͚ͩؔ࿈͢Δ͔ɺશମతͳฏۉ Λͱͬͨͷ
Ψεճؼաఔͷཁૉදݱ (3/3) • , ͱఆ ٛ͢Δͱɺ࣍ͷΑ͏ʹॻ͚Δ* • ͜ͷܭࢉάϥϑߏͰ͔͚Δ * ӈਤͱผͷఆٛ
ΨεաఔճؼϞσϧ Recap ߲ ϙΠϯτ 1. Ψεաఔͷ༧ଌ ਪΧʔωϧؔΛ༻͍ͨطͷσ ʔλͱͷྨࣅܭࢉ͔ΒͰ͖Δ 2. Ψεաఔճؼͷܭࢉ
۩ମతͳ࣮Ͱٯߦྻͷܭࢉ͕ܭࢉ ͷେΛΊΔ 3. Ψεճؼաఔͷཁૉදݱ αϙʔτϕΫτϧϚγϯχϡʔϥϧ ωοτϫʔΫͱͷؔ࿈͕ࣔࠦ͞ΕΔ
༨ஊ Firebase • Firebase ͷυΩϡϝϯτʹʮߴͳ ϕΠζ౷ܭʯΛ༻͍ͯͱ͋Γ·͢Ͷ • Optimize1 Ͱ͍ͬͯΔΈ͍ͨͰ͢ Ͷ
• ࣄલʹ Beta(0, 0) Λ༻͍͍ͯ Δͷͼͬ͘Γ͠·ͨ͠ 1 Google Analytics Λ༻͍ͨ Web αΠτͷ A/B ςετ༻αʔϏε
࣍ 1.ϕΠζਪʹΑΔػցֶशೖ 2.Ψεաఔ֓ཁ 3.ΨεաఔճؼϞσϧ 4.ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ <- 5.ΨεաఔճؼͷҰൠԽ
ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ ߲ ༰ 1. ϋΠύʔύϥϝʔλͷ࠷దԽ Ψεաఔʹ͓͚Δޯ߱Լ๏ 2. ϋΠύʔύϥϝʔλͱہॴղ େҬղͱہॴղ 3.
Χʔωϧͷબ ΧʔωϧͷΈ߹Θͤํ
ϋΠύʔύϥϝʔλͷ࠷దԽ • Ψεաఔͷ࣮ʹ͓͍ͯɺֶशաఔͰάϥϜߦྻͷܭࢉ݁ ՌΛهԱ͢Δ͚ͩͩͬͨ • ҰํɺΧʔωϧؔʹϋΠύʔύϥϝʔλΛ࣋ͭͷ͕ଟ͍ • e.g. RBF Χʔωϧ
• ͜ΕΒͷύϥϝʔλʹ͍ͭͯɺσʔλ͔Β࠷దԽͰ͖ͳ͍͔ݕ ౼͢Δ
࠷దԽͷํ 1.σʔλΛਖ਼نԽ͢Δ2 2.࠷దԽͷରΛର ͱ͢Δ 3.ରͷޯΛܭࢉ͢Δ • ͜ͷࡍʹάϥϜߦྻΛύϥϝʔλͰ ඍ͢Δඞཁ͕͋Δ 4.ޯ߱Լ๏ʹجͮ͘ԿΒ͔ͷΞϧΰϦ ζϜΛ༻͍ͯ࠷దԽ͢Δ
2 ऍ 23 ΑΓɺ͜͜ͰฏۉΛ 0 ࢄΛ 1 ʹ͍ͯ͠Δ
ϋΠύʔύϥϝʔλͱہॴղ • େҬղͰͳ͘ہॴղʹؕΔ߹͕͋ Δͷʹҙ • ͜ΕۙܭࢉʹҰൠͷੑ࣭ • ϋΠύʔύϥϝʔλͷ࣍ݩ͕ߴ͍߹ MCMC3 ͳͲΛͬͯܭࢉ͢Δͱྑ͍ͱ
ओு͍ͯ͠Δ 3 ͜͜Ͱݴ͏ MCMC Metropolis–Hastings ͰཚΛੜͯ͠ظΛܭ ࢉ͢Δͱ͍͏ҙຯͰͳ͘ɺͦΕΛϋΠύʔύϥϝʔλʔ୳ࡧʹ͏ͱ͍͏ҙຯ (ޮΑ͘ϥϯμϜαʔνΛΔΠϝʔδ) cf. ऍ 26
Χʔωϧͷબ • ΧʔωϧͷબΛߦ͏͜ͱͰɺ֎෦͔ ΒࣝΛೖͰ͖Δ • RBF Χʔωϧ͚ͩΛ༻͍ͨਤ(a)Ͱ ɺσʔλͷ͋ΔՕॴͱ͔͘ɺӈ ͕ո͍͠ •
ઢܗΧʔωϧΛՃ͑ͨਤ(b)Ͱɺશମ తʹҰ؏͕ͨ͋͠Δͱ͍͏݁ՌΛ ಘΒΕ͍ͯΔ
ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ Recap ߲ ༰ 1. ϋΠύʔύϥϝʔλͷ࠷దԽ ޯ߱Լ๏Λ༻͍ͨ࠷దԽ͕Ͱ͖Δ(Χ ʔωϧʹΑΔ) 2. ϋΠύʔύϥϝʔλͱہॴղ
େҬղʹ౸ୡ͢Δอূͳ͍ͷͰҙ ͢Δ 3. Χʔωϧͷબ RBF ΧʔωϧҎ֎ͷΧʔωϧซ༻͢ Δͱྑ͘ͳΔ߹͕͋Δ
༨ஊ • ΨεաఔͷΧϧϚϯϑΟϧλͱࣅ ͍ͯΔ • ܚԠେֶͷΧϧϚϯϑΟϧλͷߨٛ4͕ ໘ന͔ͬͨ • ಉ࣌ʹ͏ํ๏ఏএ͞Ε͍ͯΔ༷ࢠ5 (ະಡ)
5 J. Ko and D. Fox: GP-BayesFilters: Bayesian filtering using Gaussian process prediction and observation models, Autonomous Robots, 27-1, 75/90 (2009) 4 ܚጯେֶߨٛ Ԡ༻֬ ୈेࡾճɹϕΠζͷํ๏ ΧϧϚϯϑΟϧλ̍ https://www.youtube.com/watch?v=P85JCE3tZWY
࣍ 1.ϕΠζਪʹΑΔػցֶशೖ 2.Ψεաఔ֓ཁ 3.ΨεաఔճؼϞσϧ 4.ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ 5.ΨεաఔճؼͷҰൠԽ <-
ΨεաఔճؼͷҰൠԽ ༰ ߲ 1. ϩόετͳΨεաఔճؼ ΨεաఔͰίʔγʔΛ༻͍Δ 2. ΨεաఔࣝผϞσϧ ΨεաఔΛྨʹద༻͢Δ 3.
ϙΞιϯճؼϞσϧ ΨεաఔΛΠϕϯτͷൃੜճͷ༧ଌ ʹద༻͢Δ ίϥϜ χϡʔϥϧωοτϫʔΫͱΨε աఔ χϡʔϥϧωοτϫʔΫΨεաఔ
֓ཁ • ؍ଌϞσϧͱͯ͠ΨεΛఆ͍͕ͯͨ͠ɺੈͷதͦ͏Ͱ ͳ͍͜ͱଟ͍ (e.g. Ի୯ޠͷੜ֬) • Ψεաఔʹ͓͚Δೖྗ ͔Β؍ଌ ͕ੜ͞Ε
Δ֬ ʹਖ਼نҎ֎ͷ֬Λ༻͍Δ͜ͱՄೳ • ͕ղੳతʹܭࢉͰ͖ͳ͍ͷͰɺMCMC ม ϕΠζͱ͍ͬͨۙࣅਪͰࣄޙΛٻΊΔ
1. ϩόετͳΨεաఔճؼ • ͷ͍Λ༻͍Δ͜ͱͰϩόετ ͳϞσϧ͕Ͱ͖Δ • Cauchy (t )
Λ༻͍Δ • ӈਤͰ֎ΕʹϩόετͳϞσϧ͕ Ͱ͖͍ͯΔ • ࣄޙղੳతʹٻΊΒΕͳ͍ͷͰ MCMC ͳͲͰۙࣅతʹٻΊΔ
2. ΨεաఔࣝผϞσϧ • ؍ଌ ͕ 2 ͷͱ͖ ͱ֬Λܭࢉ͍ͨ͠ • ͱͯ͠γάϞΠυؔΛ༻͍Δ
• ϓϩϏοτؔ (ਖ਼نͷྦྷੵີ ؔ) ΛΑۙ͘ࣅ͢Δ • ਪఆෳࡶͳͷͰ୯ʹྨΛߦ͍͍ͨ ߹ʹϝϦοτͳ͍ • ଞͷ֬աఔͱͷΈ߹ΘͤΛߟ͑Δ ߹ʹ͓ͬͯ͘ͱྑ͍
3. ϙΞιϯճؼϞσϧ • ؍ଌ ͕ࣗવͷͱ͖ʹΨεաఔ Λ༻͍ͨճؼΛߦ͍͍ͨ • ύϥϝʔλʔ ͱೖྗ ͷؒʹ
ΛԾఆ͢Δ • • ࣄޙΓෳࡶ
χϡʔϥϧωοτϫʔΫͱΨεաఔ ཁ • ॏΈͷॳظʹখ͞ͳཚΛ༻͍Δɺͱ͍͏ͷҰൠత • ʮଟͷॏΈΛ͔͚߹Θͤͯ͢ʯͱ͍͏ͷɺظΛͱΔ ૢ࡞ͱΈͳͤɺ݁Ռத৺ۃݶఆཧ͔ΒΨεʹۙͮ͘ • ωοτϫʔΫʹΑͬͯΧʔωϧ͕ؔղੳతʹٻΊΒΕΔ •
࣮ࡍɺਂֶशΨεաఔͱΈͳͤΔ24 24 Deep Neural Networks as Gaussian Processes. 2017. https://arxiv.org/abs/1711.00165.
ΨεաఔճؼͷҰൠԽ Recap ༰ ߲ 1. ϩόετͳΨεաఔճؼ ίʔγʔΛ༻͍Δͱ֎Εʹڧ͘ͳ Δ 2. ΨεաఔࣝผϞσϧ
ϩδεςΟοΫճؼΛΨεաఔʹద༻ Ͱ͖Δ 3. ϙΞιϯճؼϞσϧ ϙΞιϯճؼΛΨεաఔʹద༻Ͱ͖Δ χϡʔϥϧωοτϫʔΫͱΨεաఔ χϡʔϥϧωοτϫʔΫΨεաఔ
Recap ֓ཁ ϙΠϯτ ϕΠζਪʹΑΔػցֶशೖ ϕΠζਪʹ͓͚Δֶशͱਪ Ψεաఔͷఆٛ ఆٛͱΧʔωϧτϦοΫ ΨεաఔճؼϞσϧ Ψεաఔʹ͓͚Δਪํ๏ ΨεաఔճؼͷϋΠύʔύϥϝʔλਪఆ
Ψεաఔʹ͓͚Δֶशํ๏ ΨεաఔճؼͷҰൠԽ ਖ਼نҎ֎ΛԾఆͨ͠Ψεաఔ