Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
仕事で取り組む 生成 AI 時代の対話の品質評価
Search
Asei Sugiyama
September 30, 2024
Technology
2
130
仕事で取り組む 生成 AI 時代の対話の品質評価
Google Cloud Next Tokyo '24 での LT 用の資料です
Asei Sugiyama
September 30, 2024
Tweet
Share
More Decks by Asei Sugiyama
See All by Asei Sugiyama
実践AIガバナンス
asei
3
500
Eval-Centric AI: Agent 開発におけるベストプラクティスの探求
asei
1
240
AI工学特論: MLOps・継続的評価
asei
11
2.8k
生成AIを用いるサービス開発の原則
asei
1
67
基調講演: 生成AIを活用したアプリケーションの開発手法とは?
asei
2
530
Eval-Centric AI: GenAI における継続的改善の実現
asei
2
170
AI の活用における課題と現状、今後の期待
asei
4
770
MLOps の現場から
asei
10
1.2k
LLMOps: Eval-Centric を前提としたMLOps
asei
8
1k
Other Decks in Technology
See All in Technology
ブロックテーマ時代における、テーマの CSS について考える Toro_Unit / 2025.09.13 @ Shinshu WordPress Meetup
torounit
0
130
テストを軸にした生き残り術
kworkdev
PRO
0
210
2025年になってもまだMySQLが好き
yoku0825
8
4.8k
Firestore → Spanner 移行 を成功させた段階的移行プロセス
athug
1
480
react-callを使ってダイヤログをいろんなとこで再利用しよう!
shinaps
1
240
Function Body Macros で、SwiftUI の View に Accessibility Identifier を自動付与する/Function Body Macros: Autogenerate accessibility identifiers for SwiftUI Views
miichan
2
180
【初心者向け】ローカルLLMの色々な動かし方まとめ
aratako
7
3.5k
なぜスクラムはこうなったのか?歴史が教えてくれたこと/Shall we explore the roots of Scrum
sanogemaru
5
1.6k
これでもう迷わない!Jetpack Composeの書き方実践ガイド
zozotech
PRO
0
860
Agile PBL at New Grads Trainings
kawaguti
PRO
1
430
開発者を支える Internal Developer Portal のイマとコレカラ / To-day and To-morrow of Internal Developer Portals: Supporting Developers
aoto
PRO
1
460
実践!カスタムインストラクション&スラッシュコマンド
puku0x
0
420
Featured
See All Featured
Code Review Best Practice
trishagee
70
19k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.7k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Fireside Chat
paigeccino
39
3.6k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
GitHub's CSS Performance
jonrohan
1032
460k
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
The Power of CSS Pseudo Elements
geoffreycrofte
77
6k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.1k
Transcript
Proprietary 仕事で取り組む 生成 AI 時代の 対話の品質評価
02 Proprietary Google Cloud Next Tokyo ’24 杉山 阿聖 株式会社
Citadel AI Software Engineer
03 Proprietary 01 なぜ「評価」なのか 02 対話の品質評価 03 生成 AI の比較
04 まとめ アジェンダ
04 Proprietary Google Cloud Next Tokyo ’24 なぜ「評価」なのか
05 Proprietary Google Cloud Next Tokyo ’24 身近に広がる生成 AI •
チャット専用のアプリを超えて さまざまな箇所で使われている • さまざまなサービスや デバイスとの統合は 世界的な潮流として進むと思われる ※画像の置換方法 グレーボックスを選択し、 右クリックで「画像を置 換」を選択し、配置したい画像に差し替えてくださ い。本テキストは削除してください。
06 Proprietary & Confidential ※画像の置換方法 グレーボックスを選択し、 右クリックで「画像を置換」 を選択 し、配置したい画像に差し替えてください。本テキストは削除し てください。
※画像の置換方法 グレーボックスを選択し、 右クリックで「画像を置換」 を選択 し、配置したい画像に差し替えてください。本テキストは削除し てください。 生成 AI は特定分野の 専門知識に弱い • 同じプロンプトから左折の手順 を生成 • 上 : Gemini 1.5 Pro • 下 : ChatGPT 4o • ともに信号機を確認しない
07 Proprietary Google Cloud Next Tokyo ’24 基盤モデルの Finetune •
生成 AI 以前の常識に従えば 業界特化な知識は finetune で与える • 基盤モデルを finetune し 特化モデルを作成することは 技術的に可能 ※画像の置換方法 グレーボックスを選択し、 右クリックで「画像を置 換」を選択し、配置したい画像に差し替えてくださ い。本テキストは削除してください。 Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv preprint arXiv:2106.09685 (2021). https://arxiv.org/abs/2106.09685
08 Proprietary Google Cloud Next Tokyo ’24 Finetune で特定分野の 知識を与えるのは困難
• モデルの知らない知識を 意図的に与えた実験 • 知らない知識を与えれば 与えるハルシネーションを 引き起こしやすくなる ※画像の置換方法 グレーボックスを選択し、 右クリックで「画像を置 換」を選択し、配置したい画像に差し替えてくださ い。本テキストは削除してください。 Gekhman, Zorik, et al. "Does Fine-Tuning LLMs on New Knowledge Encourage Hallucinations?." arXiv preprint arXiv:2405.05904 (2024). https://arxiv.org/abs/2405.05904
09 Proprietary & Confidential Google Cloud Next Tokyo ’24 ※画像の置換方法
グレーボックスを選択し、 右クリックで「画像を置換」 を選択 し、配置したい画像に差し替えてください。本テキストは削除し てください。 Gekhman, Zorik, et al. "Does Fine-Tuning LLMs on New Knowledge Encourage Hallucinations?."arXiv preprint arXiv:2405.05904 (2024). https://arxiv.org/abs/2405.05904
010 Proprietary Google Cloud Next Tokyo ’24 • 検索と生成 AI
の合せ技 • 検索で特定分野の知識を 与えられるアーキテクチャ • 特定分野の知識を与えたとしても、そ れをモデルが利用できるかは 自明でない • 故に評価が必要 RAG (Retrieval-Augmented Generation) ※画像の置換方法 グレーボックスを選択し、 右クリックで「画像を置 換」を選択し、配置したい画像に差し替えてくださ い。本テキストは削除してください。 Infrastructure for a RAG-capable generative AI application using GKE https://cloud.google.com/architecture/rag-capable-gen-ai-app-using-gke
011 Proprietary Google Cloud Next Tokyo ’24 対話の品質評価
012 Proprietary Google Cloud Next Tokyo ’24 対話の品質評価の 3 つの方法
• ベンチマークを用いた事前評価 : QA4AI ガイドライン • 仮想シナリオを用いた事前評価 : デジタル庁のレポート • 対話ログを用いた事後評価: 弊社での取り組み 評価手法 ベンチマーク 仮想シナリオ 対話ログ 事前評価可能 ✓ ✓ カスタマイズ性 ✓ 特定業務の品質評価 ✓
013 Proprietary Google Cloud Next Tokyo ’24 ベンチマークによる評価 (1/2) •
QA4AI AI プロダクト品質保証 ガイドライン (2024.04 版) • ベンチマークとなる データセットを用いた方法を紹介 • 典型的な「正確性」だけではなく「創造 性‧多様性」といった 新たな品質も整理 ※画像の置換方法 グレーボックスを選択し、 右クリックで「画像を置 換」を選択し、配置したい画像に差し替えてくださ い。本テキストは削除してください。
014 Proprietary Google Cloud Next Tokyo ’24 ベンチマークによる評価 (2/2) •
ベンチマークには課題も 1. 得点として計測する方法に 収束させがち 2. 測りたい品質特性に合った ベンチマークがあるとは限らない 3. 測りたい品質特性の明確化が 事前に必要 ※画像の置換方法 グレーボックスを選択し、 右クリックで「画像を置 換」を選択し、配置したい画像に差し替えてくださ い。本テキストは削除してください。
015 Proprietary & Confidential ※画像の置換方法 グレーボックスを選択し、 右クリックで「画像を置換」 を選択 し、配置したい画像に差し替えてください。本テキストは削除し てください。
※画像の置換方法 グレーボックスを選択し、 右クリックで「画像を置換」 を選択 し、配置したい画像に差し替えてください。本テキストは削除し てください。 仮想シナリオによる 評価の例 • 2023年度 デジタル庁・行政における生 成 AI の適切な利活用に向けた 技術検証 • ユースケースを洗い出し、 ユースケースごとに評価観点を 整理して、評価用データを作成 • カバレッジは良い • 件数の確保には苦労している (10 件)
016 Google Cloud Next Tokyo ’24 過去ログに基づく 評価のワークフロー ※画像の置換方法 グレーボックスを選択し、
右クリックで「画像を置換」 を選択 し、配置したい画像に差し替えてください。本テキストは削除し てください。
017 Proprietary Google Cloud Next Tokyo ’24 過去ログに基づく評価の課題 • スプレッドシートは柔軟なものの手間が多い
• 「良い」という定義をすることが難しい • 評価を自動化しないとスケールしない
018 Proprietary Google Cloud Next Tokyo ’24 生成 AI の比較
019 Google Cloud Next Tokyo ’24 スプレッドシートでの手 動評価は手間 ※画像の置換方法 グレーボックスを選択し、
右クリックで「画像を置換」 を選択 し、配置したい画像に差し替えてください。本テキストは削除し てください。
020 Google Cloud Next Tokyo ’24 ⽣成 AI の評価ツール Lens
for LLMs
021 Google Cloud Next Tokyo ’24 複数モデルの比較
022 Google Cloud Next Tokyo ’24 モデルの傾向の比較
023 Google Cloud Next Tokyo ’24 LLM を用いた評価に おけるバイアスの例
024 Proprietary Google Cloud Next Tokyo ’24 まとめ
025 Proprietary Google Cloud Next Tokyo ’24 対話の品質評価の 3 つの方法
• ベンチマークを用いた事前評価 : QA4AI ガイドライン • 仮想シナリオを用いた事前評価 : デジタル庁のレポート • 対話ログを用いた事後評価: 弊社での取り組み 評価手法 ベンチマーク 仮想シナリオ 対話ログ 事前評価可能 ✓ ✓ カスタマイズ性 ✓ 特定業務の品質評価 ✓
026 Proprietary Google Cloud Next Tokyo ’24 Lens for LLMs
Beta • 今回は時間の都合上、 実際の利用方法の大半を省略 • 登録していただいた方への プライベートベータ版としてご提供中 • ご興味ある方は一声おかけください! ※画像の置換方法 グレーボックスを選択し、 右クリックで「画像を置 換」を選択し、配置したい画像に差し替えてくださ い。本テキストは削除してください。
Thank you 027 Proprietary