In this paper, we report an experience on using and adapting Semantic Clustering to evaluate software remodularizations. Semantic Clustering is an approach that relies on information retrieval and clustering techniques to extract sets of similar classes in a system, according to their vocabularies. We adapted Semantic Clustering to support remodularization analysis. We evaluate our adaptation using six real-world remodularizations of four software systems. We report that Semantic Clustering and conceptual metrics can be used to express and explain the intention of the architects when performing common modularization operators, such as module decomposition.