Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Ground-based observations of PAHs in PNe

Ryou Ohsawa
December 10, 2017

Ground-based observations of PAHs in PNe

A presentation material in Subaru Planetary Nebulae Workshop 2017.

Ryou Ohsawa

December 10, 2017
Tweet

More Decks by Ryou Ohsawa

Other Decks in Science

Transcript

  1. Ground-based observations of PAHs in PNe Ryou Ohsawa (Univ. Tokyo)

    dust and molecules in planetary nebulae Subaru Planetary Nebua Work Sshop 2017
  2. Outline Subaru Planetary Nebua Work Sshop 2017 1. the Unidentified

    Infrared bands 2. observations of PAHs with Spitzer and AKARI 3. obsrevations with ground-based telescopes 4. future observations
  3. Unidentified IR bands Subaru Planetary Nebua Work Shop 2017 Tielens

    (2008), ARA&A, 46, 289 Flux density (10–13 W m–2 µm–1) Wavelength (µm) Orion Bar (H2S1) NGC 7027 CH stretch Combination modes CC stretch CH in-plane bending CH out-of-plane bending Plateau 140 120 100 80 60 40 20 30 25 20 15 10 5 3 4 5 6 7 8 9 10 20
  4. Unidentified IR bands Subaru Planetary Nebua Work Shop 2017 e.g.,

    Tielens (2008), ARA&A, 46, 289; Peeters, et al. (2002), A&A, 390, 1089 Strong and broad emission bands major bands appear at 3.3, 6.2, 7.7, 8.6, and 11.2 μm. 5.2 & 5.6 μm bands and plateau emission in 16−20 μm. Observed in a wide variety of objects star-forming galaxies; HII regions; young stelar objects; evolved stars. Sight variations in relative intensities and spectral shapes types of objects, radiation fields, ionization parameters.
  5. Unidentified IR bands Subaru Planetary Nebua Work Shop 2017 e.g.

    Duley & Williams (1981), MNRAS, 196, 269; Cohen, et al. (1986), ApJ, 302, 737; Cohen, et al. (1989), ApJ, 341, 246 Kwok & Zhang (2011), Nature, 479, 80; Sakata, et al. (1984), ApJL, 287, 51; Bernstein, et al. (2017), ApJ, 836, 229 Polycyclic Aromatic Hydrocarbons frequently observed in carbon-rich environments. corresponding to aromatic C-H and C-C vibrational modes. high UV absorption coefficient around 2175 Å. Other candidates: Carriers of the UIR bands mixed aromatic-aliphatic organic nanoparticles quenched carbonaceous composites small fullerene (C24 )
  6. Unidentified IR bands Subaru Planetary Nebua Work Shop 2017 Draine

    & Li (2007), ApJ, 657, 810; Compiègne, et al. (2008), 491, 797 Polycyclic Aromatic Hydrocarbons account for only a few % of carbons in galaxies. efficiently convert UV photons in emission bands in the IR
  7. Unidentified IR bands Subaru Planetary Nebua Work Shop 2017 Peeters,

    et al. (2002), A&A, 381, 571; Kaneda, et al. (2017), PASA, 34, e059 Polycyclic Aromatic Hydrocarbons a plausible extinction-free tracer of star-formation activities.
  8. Unidentified IR bands Subaru Planetary Nebua Work Shop 2017 Galliano,

    et al. (2008), ApJ, 679, 310; Mori, et al. (2012), ApJ, 744, 68 Polycyclic Aromatic Hydrocarbons a good diagnostic tool for physical environments of PDRs
  9. Unidentified IR bands Subaru Planetary Nebua Work Shop 2017 e.g.,

    Berné, et al. (2008), A&A, 479, 41; Allain, et al. (1996), A&A, 305, 616 Micelotta, et al. (2010), A&A, 510, 37; Peeters, et al. (2002), A&A, 390, 1089; Sadjadi, et al. (2015), ApJ, 807, 95 the origins of interstellar and circumstellar PAHs. chemical and physical processing of PAHs.. the origins of the variations in the spectral profiles. feasibility as the carriers of the UIR bands. Open questions - - - -
  10. PAHs in PNe Subaru Planetary Nebua Work Shop 2017 e.g.,

    Kwok, et al. (1999), ApJL, 350, 35; Schönberner (1983), ApJ, 272, 708 Micelotta, et al. (2010), A&A, 510, 37; Allain, et al. (1996), A&A, 305, 602 Planetary Nebulae: typical PAH-bearing objects surrounded by a dust shell formed in AGB and post-AGB phases having strong UV radiation fields to excite PAHs having a hot ionized gas and hrad radiation fields to process PAHs a good laboratory to investigate the origin and nature of PAHs
  11. PAHs in PNe Subaru Planetary Nebua Work Shop 2017 Stanghellini,

    et al. (2010), ApJ, 753, 172 Dust features of PNe revealed by the Spitzer/IRS /Spizter Space Telescope
  12. PAHs in PNe Subaru Planetary Nebua Work Shop 2017 Bernerd-Salas,

    et al. (2009), ApJ, 699, 1541 Metallicity dependence on circumstellar dust /Spizter Space Telescope
  13. PAHs in PNe Subaru Planetary Nebua Work Shop 2017 Zhang,

    et al. (2010), ApJ, 725, 990 Drastic evolution of carbonaceous dust features /Spizter Space Telescope
  14. PAHs in PNe Subaru Planetary Nebua Work Shop 2017 Ohsawa,

    et al. (2016), AJ, 151, 93 Galactic PNe NIR spectroscopic survey by AKARI (PI: T . Onaka) /AKARI obtaining 2.5−5.0 μm spectra of 72 Galactic PNe. compact and bright PNe were selected. measureing the intensity of emission features.
  15. PAHs in PNe Subaru Planetary Nebua Work Shop 2017 Ohsawa,

    et al. (2016), AJ, 151, 93 Galactic PNe NIR spectroscopic survey by AKARI (PI: T . Onaka) /AKARI 0 400 800 1200 1600 2000 Flux Density (10−15Wm−2µm−1) Step−like continuum PAH3.3µm PAH3.4−3.5µm HI recombination lines HeI recombination lines HeII recombination lines PNG 064.7+05.0 0 40 80 120 160 2.5 3.0 3.5 4.0 4.5 5.0 [MgIV] [ArVI] Wavelength (µm) PNG 074.5+02.1
  16. PAHs in PNe Subaru Planetary Nebua Work Shop 2017 Delgado-Inglada

    & Rodríguez (2014), ApJ, 784, 173 Ohsawa, et al. (2016), AJ, 151, 93 3.3 μm emission EWs against C/O ratios /AKARI 102 103 104 − 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6 3.3µm Equivalent Width (Å) log [C/O]CRL,RL ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [C/O]CEL [C/O]RL confirming PAH emission in O-rich PNe. no trend confirmed.
  17. PAHs in PNe Subaru Planetary Nebua Work Shop 2017 Ohsawa,

    et al., in prep. A possible signature of evolution of PAH emission /AKARI reative PAH intensity with Teff . a possible V-shape trend.
  18. PAHs in PNe Subaru Planetary Nebua Work Shop 2017 Acker,

    et al. (1992), Catalogue of Galactic Planetary Nebulae Ohsawa, et al. (2016), AJ, 151, 93 Extinction by circumstellar dust /AKARI 0.0 0.2 0.4 0.6 0.8 1.0 −1 0 1 2 3 4 5 6 Cumulative Histogram Av (mag.) Av(Hβ) Av(Hβ)−Av(DSS) extinction estimated from Brα/Hβ. large extinction by CSM dust. PAHs in PNe not fully excited.
  19. PAHs in PNe Subaru Planetary Nebua Work Shop 2017 Guzman-Ramirez,

    et al. (2014), MNRAS, 441, 364 PAH formation in O-rich environment: CO photodissociation /VL T-VISIR PN Cn1-5
  20. PAHs in PNe Subaru Planetary Nebua Work Shop 2017 Matsumoto,

    et al. (2008), ApJ, 677, 1120 PAH formation in O-rich environment: recent third dredge-up /Subaru-COMICS BD+30° 3639
  21. PAHs in PNe Subaru Planetary Nebua Work Shop 2017 Lau,

    et al. (2016), ApJ, 833, 115 Possible PAH formation induced by an energetic outflow /SOFIA-FORCAST
  22. PAHs in PNe Subaru Planetary Nebua Work Shop 2017 Lau,

    et al. (2016), ApJ, 833, 115 Possible PAH formation induced by an energetic outflow /SOFIA-FORCAST
  23. PAHs in PNe Subaru Planetary Nebua Work Shop 2017 Kastner,

    et al. (2001), ApJL, 550, 189; Cox, et al. (2002), A&A, 384, 603; Lau, et al. (2016), ApJ, 833, 115 Possible PAH formation induced by an energetic outflow /SOFIA-FORCAST PAH enhancement along the X-ray outflow. low dust column density along the outflow. PAH formation by non-thermal sputtering. X-ray outflow
  24. PAHs in PNe Subaru Planetary Nebua Work Shop 2017 Kwok,

    et al. (1996), PASP, 105, 1456; Ohsawa, et al. (2012), ApJ, 760, 34 N-band spectroscopic/imaging observation of a young PN /Subaru-COMICS PN K 3-62
  25. PAHs in PNe Subaru Planetary Nebua Work Shop 2017 Ohsawa,

    et al. (2012), ApJ, 760, 34 /Subaru-COMICS
  26. PAHs in PNe Subaru Planetary Nebua Work Shop 2017 Ohsawa,

    et al. (2012), ApJ, 760, 34 /Subaru-COMICS
  27. Future Observations Subaru Planetary Nebua Work Shop 2017 Spatial Resolution

    Sensitivity 1″ 0″.1 1 Jy 1 mJy (N-spc. 10 σ, 104 sec)
  28. Future Observations Subaru Planetary Nebua Work Shop 2017 Spatial Resolution

    Sensitivity 1″ 0″.01 1 Jy 1 mJy (N-spc. 10 σ, 104 sec) 1 μJy 0″.1 JWST(~2018)
  29. Future Observations Subaru Planetary Nebua Work Shop 2017 Spatial Resolution

    Sensitivity 1″ 0″.01 1 Jy 1 mJy (N-spc. 10 σ, 104 sec) 1 μJy 0″.1 JWST(~2018)
  30. Future Observations Subaru Planetary Nebua Work Shop 2017 Brandl, et

    al. (2016), Proc. SPIE, 990820; Packham, et al. (2012), Proc. SPIE, 84467G E-EL T/METIS (Mid-Infrared E-EL T Imager and Spectrograph) /Instruments TMT/MICHI (Mid-Infrared Camera with High spectral resolution and IFU) 3−20 μm imaging; L,M,N-bands spectroscopy +IFU; available from 2025 L,M,N,(Q)-bands imaging & spectroscopy +IFU; proposing as 2nd gen. inst. evoution of the UIR band ratios across the PDR shell. investigate minor structures in the envelope. ▶ ▶
  31. Future Observations Subaru Planetary Nebua Work Shop 2017 Kataza, et

    al. (2000), Proc. SPIE, 4008, 1144 COMICS (Cooled Mid-Infrared Camera and Spectrometer) /Instruments New Instruments? 8−25 μm imaging; N,(Q)-bands spectroscopy Optical or Infrared IFU with AO? Mid-Infrared Spectropolarimetry? this blank should be filled with excellent ideas
  32. Summary Subaru Planetary Nebua Work Sshop 2017 the Unidentified Infrared

    bands observations of the UIR bands in PNe future observations origins and processing of the carriers to be understood. evolution of the UIR bands ~ evolution of PDRs. importance of spatially-resolved observations. make good collaborations with JWST.
  33. Future Observations Subaru Planetary Nebua Work Shop 2017 Brandl, et

    al. (2016), Proc. SPIE, 990820; Packham, et al. (2012), Proc. SPIE, 84467G Kataza, et al. (2000), Proc. SPIE, 4008, 1144; Lagage, et al. (2004), Messenger, 117, 12 E-EL T/METIS (Mid-Infrared E-EL T Imager and Spectrograph) /Instruments TMT/MICHI (Mid-Infrared Camera with High spectral resolution and IFU) Subaru/COMICS (Cooled Mid-Infrared Camera and Spectrometer) VL T/VISIR (VL T spectrometer and imager for the mid-infrared) 3−20 μm imaging; L,M,N-bands spectroscopy +IFU; available from 2025 L,M,N,(Q)-bands imaging & spectroscopy +IFU; proposing as 2nd gen. inst. 8−25 μm imaging; low-resolution spectroscopy in the N-band 5−20 μm imaging; N-band low & mid-resolution spectroscopy
  34. Future Observations Subaru Planetary Nebua Work Shop 2017 Kamizuka, et

    al. (2016), Proc. SPIE, 91473C; Kamizuka, et al. (2016), Proc. SPIE, 99083W (Mid-Infrared Multi-field Imager for gaZing at the UnKnown Universe) /T AO TAO/MIMIZUKU covering 2−5, 8−26, and 26−38 μm Q-band low-resolution spectroscopy ★ ★ commissioning at Subaru in 2018; operations at the T AO site (Atacama, Chile)in 2019 ★