Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
第3回 機械学習の手法
Search
Atsushi
January 30, 2018
0
170
第3回 機械学習の手法
B3勉強会 第3回目
発表日 2018年1月30日
Atsushi
January 30, 2018
Tweet
Share
More Decks by Atsushi
See All by Atsushi
文献紹介:Automated Evaluation of Out-of-Context Errors
atsumikan
0
96
文献紹介:Correction of OCR Word Segmentation Errors in Articles from the ACL Collection through Neural Machine Translation Methods
atsumikan
0
150
文献紹介:Auxiliary Objectives for Neural Error Detection Models
atsumikan
0
89
文献紹介:Wronging a Right: Generating Better Errors to Improve Grammatical Error Detection
atsumikan
0
120
文献紹介:Low-resource OCR error detection and correction in French Clinical Texts
atsumikan
0
120
文献紹介:CMMC-BDRC Solution to the NLP-TEA-2018 Chinese Grammatical Error Diagnosis Task
atsumikan
0
130
文献紹介 : Fluency Boost Learning and Inference for Neural Grammatical Error Correction
atsumikan
0
170
文献紹介:語彙の概念化と Wikipediaを用いた英字略語の意味推定方法
atsumikan
0
150
文献紹介:The Effect of Error Rate in Artificially Generated Data for Automatic Preposition and Determiner Correction
atsumikan
0
130
Featured
See All Featured
Documentation Writing (for coders)
carmenintech
74
5k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Agile that works and the tools we love
rasmusluckow
330
21k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.7k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Git: the NoSQL Database
bkeepers
PRO
431
66k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Building an army of robots
kneath
306
46k
Transcript
B3 130 B3
word2vec u 84)60#= 84(*% -,:; u 84$+5 (
!"/'3. u (*7 912& 84 <(*/'
word2vec !C)+ u ?5( )+$6("% u 4?5*<101. 10001.:&',8)+ u ?5*<D
@3 ;9- /+ -= -; u 7A2# ?5*<>=?5!B0
word2vec %A+- 2"/B/#//3<// #69@;2"B3<0 7$';!D)"(!) 1 C4@;V=? ,1Vid 5:
#& /( ! : (" !% , " !' , ⋯ , " !) ) .8* ! #,>+ !
word2vec ()
word2vec >>ibm query: ibm machines: 0.390068233013 digital: 0.382320284843 p&g:
0.342204213142 navigation:0.331580519676 mixte:0.323415249586 >> monday query: monday friday: 0.679558992386 late: 0.640058636665 plunge: 0.542724490166 thursday: 0.527576982975 yesterday: 0.52104818821
word2vec ]Ec u '/3!04* kb, )2HMFljsCRY '/3!04*nC O6 u
Iuyt Qb?\hH,iL:GX^@=B`o fb"-4bkb($#&)90%nC \h \hH8G;K Kp u Q&A%1&).&) 5Z>?mVSwNeHMv7 <A+/ aJg _U u [T9q rWdZ Px9j DM
word2vec - word2vec#$- u & % u &
. !/( +$' *)+$, !/( #$word2vec"
Recurrent Neural Network $+,6:K`6D EU<@ u CGN B,Y23X/ H,
L47_W2 K`F^ NN'#,1 0\9[VaS%)*,&"$- Z815;,Z81/; RNN5;T/;TPM1.(,#! J=PI >?9O= AR'#,Q]
Recurrent Neural Network RNNLM u !"(!)
u s = %& %' ⋯ %) (N! #) " ! = " %& , %' , ⋯ , %- = " %& " %' %& " %. %& %' ⋯ " %) %& %' ⋯ %)/& = "(%& ) 0 "(%1 |%& %' ⋯ %1/& ) ) 13' "(%1 |%& %' ⋯ %1/& ) ! # ! "
Recurrent Neural Network * RNNLM *! s=“+ " ”
“ ”2,%. u %./) u P(“+'" ”) u P(“+-" ”) $&(1 0 u #
Recurrent Neural Network )- ! /* %1 "+ !! $#"
" 2$ " = 1 ' ( − log- . /0 |! 2 034 D:/*'(% 0-2/4 /- ⋯ /6) $#")- ! 34( .& , !
Recurrent Neural Network #0 u 1epoch $& ,*-(/2' ,
% *s1 " 1epoch+3 u #0 .)!" 4, $&1000* .)
Recurrent Neural Network u 1epoch 208.103092604 u 2epoch 174.181462185
u 3epoch 164.917536858 u 4epoch 160.432661616 u 5epoch 157.165286105
Recurrent Neural Network u $%" Google%"RNNNeural Machine Translation
%" u u !# u ! Convolution Neural NetworkRNN
V W u word2vec u Recurrent Neural Network op u
v(2017) Chainer v2 m s n bf u 0 5 /6 gl de Nura c wiRk 9 566 2 6 6 3: 52 2 2 9: 61 62 : ) 5 6 1 6 1 71 51 6 9 u .-- ht _ .6 6 -6 2 -6 9 566 2 6 6 566 1 62 : ( 6 6 6 2 6 9