Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
第3回 機械学習の手法
Search
Atsushi
January 30, 2018
0
170
第3回 機械学習の手法
B3勉強会 第3回目
発表日 2018年1月30日
Atsushi
January 30, 2018
Tweet
Share
More Decks by Atsushi
See All by Atsushi
文献紹介:Automated Evaluation of Out-of-Context Errors
atsumikan
0
97
文献紹介:Correction of OCR Word Segmentation Errors in Articles from the ACL Collection through Neural Machine Translation Methods
atsumikan
0
160
文献紹介:Auxiliary Objectives for Neural Error Detection Models
atsumikan
0
90
文献紹介:Wronging a Right: Generating Better Errors to Improve Grammatical Error Detection
atsumikan
0
120
文献紹介:Low-resource OCR error detection and correction in French Clinical Texts
atsumikan
0
120
文献紹介:CMMC-BDRC Solution to the NLP-TEA-2018 Chinese Grammatical Error Diagnosis Task
atsumikan
0
130
文献紹介 : Fluency Boost Learning and Inference for Neural Grammatical Error Correction
atsumikan
0
170
文献紹介:語彙の概念化と Wikipediaを用いた英字略語の意味推定方法
atsumikan
0
150
文献紹介:The Effect of Error Rate in Artificially Generated Data for Automatic Preposition and Determiner Correction
atsumikan
0
130
Featured
See All Featured
Leading Effective Engineering Teams in the AI Era
addyosmani
7
680
Testing 201, or: Great Expectations
jmmastey
46
7.7k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
How GitHub (no longer) Works
holman
315
140k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.1k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Designing for humans not robots
tammielis
254
26k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
210
A designer walks into a library…
pauljervisheath
209
24k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.5k
RailsConf 2023
tenderlove
30
1.3k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Transcript
B3 130 B3
word2vec u 84)60#= 84(*% -,:; u 84$+5 (
!"/'3. u (*7 912& 84 <(*/'
word2vec !C)+ u ?5( )+$6("% u 4?5*<101. 10001.:&',8)+ u ?5*<D
@3 ;9- /+ -= -; u 7A2# ?5*<>=?5!B0
word2vec %A+- 2"/B/#//3<// #69@;2"B3<0 7$';!D)"(!) 1 C4@;V=? ,1Vid 5:
#& /( ! : (" !% , " !' , ⋯ , " !) ) .8* ! #,>+ !
word2vec ()
word2vec >>ibm query: ibm machines: 0.390068233013 digital: 0.382320284843 p&g:
0.342204213142 navigation:0.331580519676 mixte:0.323415249586 >> monday query: monday friday: 0.679558992386 late: 0.640058636665 plunge: 0.542724490166 thursday: 0.527576982975 yesterday: 0.52104818821
word2vec ]Ec u '/3!04* kb, )2HMFljsCRY '/3!04*nC O6 u
Iuyt Qb?\hH,iL:GX^@=B`o fb"-4bkb($#&)90%nC \h \hH8G;K Kp u Q&A%1&).&) 5Z>?mVSwNeHMv7 <A+/ aJg _U u [T9q rWdZ Px9j DM
word2vec - word2vec#$- u & % u &
. !/( +$' *)+$, !/( #$word2vec"
Recurrent Neural Network $+,6:K`6D EU<@ u CGN B,Y23X/ H,
L47_W2 K`F^ NN'#,1 0\9[VaS%)*,&"$- Z815;,Z81/; RNN5;T/;TPM1.(,#! J=PI >?9O= AR'#,Q]
Recurrent Neural Network RNNLM u !"(!)
u s = %& %' ⋯ %) (N! #) " ! = " %& , %' , ⋯ , %- = " %& " %' %& " %. %& %' ⋯ " %) %& %' ⋯ %)/& = "(%& ) 0 "(%1 |%& %' ⋯ %1/& ) ) 13' "(%1 |%& %' ⋯ %1/& ) ! # ! "
Recurrent Neural Network * RNNLM *! s=“+ " ”
“ ”2,%. u %./) u P(“+'" ”) u P(“+-" ”) $&(1 0 u #
Recurrent Neural Network )- ! /* %1 "+ !! $#"
" 2$ " = 1 ' ( − log- . /0 |! 2 034 D:/*'(% 0-2/4 /- ⋯ /6) $#")- ! 34( .& , !
Recurrent Neural Network #0 u 1epoch $& ,*-(/2' ,
% *s1 " 1epoch+3 u #0 .)!" 4, $&1000* .)
Recurrent Neural Network u 1epoch 208.103092604 u 2epoch 174.181462185
u 3epoch 164.917536858 u 4epoch 160.432661616 u 5epoch 157.165286105
Recurrent Neural Network u $%" Google%"RNNNeural Machine Translation
%" u u !# u ! Convolution Neural NetworkRNN
V W u word2vec u Recurrent Neural Network op u
v(2017) Chainer v2 m s n bf u 0 5 /6 gl de Nura c wiRk 9 566 2 6 6 3: 52 2 2 9: 61 62 : ) 5 6 1 6 1 71 51 6 9 u .-- ht _ .6 6 -6 2 -6 9 566 2 6 6 566 1 62 : ( 6 6 6 2 6 9